Cheap Renewable Energy: Use of Recycled Semiconductors as Photovoltaic Cell

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3757
Author(s):  
Susann Stritzke ◽  
Prem Jain

Decentralised renewable energy (RE) systems such as solar PV mini-grids (MG) are considered to be a cornerstone for the strategic achievement of the UN’s energy access goals in the developing world. Many of these systems implemented however face substantial technical, financial and social sustainability challenges which are also a recurring theme in the relevant literature. MG analyses however often lack detailed technical or financial data or apply ‘silo-approaches’ as a comprehensive review of MG case study literature presented in this article reveals. Consequently, this study aims to enhance the understanding of RE MG sustainability in the developing context based on the integrated evaluation of the technical, financial and social dimensions of MG operation through empirical data from community surveys on energy use from Uganda and Zambia and two in-depth MG case studies from Zambia. By presenting detailed technical and financial data in combination with energy consumer perception, the study aims to close existing data gaps on sustainable RE MG operation and offers an approach to evaluate and optimise the operational sustainability of an MG in its individual local context. The article finds that the complex rural community ecosystem is a central, but yet undervalued determinant of MG sustainability in rural developing contexts. The mismatch between energy affordability and MG tariffs threatens MG sustainability and the scaling of energy access projects if not addressed specifically during project development and implementation. Consequently, the article calls for a strategic inclusion of community-ecosystem parameters and MG planning based on realistic energy affordability levels and an added value approach that includes dynamic MG financing mechanisms and targeted measures to generate added value through energy consumption as integral parts of RE MG projects.


2018 ◽  
Vol 48 ◽  
pp. 03006 ◽  
Author(s):  
László Gyarmati

At the University of Szeged, as the greenest University of Hungary, the sustainability project is built on two pillars. One of them is based on events and communication campaigns held regularly for the University citizens to prompt environmental-conscious behaviour, whereas the other is built on technological developments and on the extensive use of renewable energy resources. Thus the development of built environment and social responsibility both support the adequacy to sustainability requirements. The spreading of the effective solutions to making more and more buildings of the University energy efficient, numerous investments using renewable energy are also responsible for the decrease of the natural energy use of the institution contrary to the fact that the number of the buildings of the University of Szeged is continually increasing. It can be stated that the University of Szeged is committed to using renewable energy which is taken into consideration of each investment planning. The following examples confirm it: using geothermal cascade system for heating and cooling of five university bulidings, solar panels on 24 builidings and a unique technology of using the heat of wastewater to cool and heat one of the main bulidings of the university, namely the Study and Information Centre.


2015 ◽  
Vol 5 (2) ◽  
pp. 7-12
Author(s):  
I. L. Cîrstolovean

Abstract The goals of this paper are: to estimate the carbon emission reduction on energy efficiency measurements in a laboratory building in Transilvania University from Braşov, Romania, in accordance with the European Directive 2009/28/EC and to estimate the contribution of renewable energy to energy efficiency of the building using the performance indicator named Renewable Energy Ratio - RER. We will detail the methods of calculation for CO2 emissions and we will present the results for gas condensing boiler, and ground source heat pump for the laboratory building. The results show that conventional energy efficiency technologies and renewable energy technologies can be used to decrease CO2 emissions in buildings by 20–30% on average and up to over 40% for some building types and locations. The contribution of renewable energy is between 40 and 50 % from total energy use and only for heating is 58%. This value could rise to 0.63 if we apply to electricity produced by photovoltaic panels.


1992 ◽  
Vol 3 (4) ◽  
pp. 430-443 ◽  
Author(s):  
Ruud Pleune

Present energy use - largely dependent on fossil fuels - is incompatible with the sustainable world concept. In a sustainable world, energy sources are renewable and used in a way that damage to the environment is minimalized. This study investigates the possibility of a sustainable world using renewable energy sources. It appears that - when strict energy conservation is applied - such a sustainable world seems to be attainable. This requires, however, drastic changes in most parts of society.


Author(s):  
Minxian Xu ◽  
Adel N. Toosi ◽  
Behrooz Bahrani ◽  
Reza Razzaghi ◽  
Martin Singh

2021 ◽  
Author(s):  
Md. Mahmudul Alam ◽  
Wahid Murad

This study investigates the short-term and long-term impacts of economic growth, trade openness and technological progress on renewable energy use in Organization for Economic Co-operation and Development (OECD) countries. Based on a panel data set of 25 OECD countries for 43 years, we used the autoregressive distributed lag (ARDL) approach and the related intermediate estimators, including pooled mean group (PMG), mean group (MG) and dynamic fixed effect (DFE) to achieve the objective. The estimated ARDL model has also been checked for robustness using the two substitute single equation estimators, these being the dynamic ordinary least squares (DOLS) and fully modified ordinary least squares (FMOLS). Empirical results reveal that economic growth, trade openness and technological progress significantly influence renewable energy use over the long-term in OECD countries. While the long-term nature of dynamics of the variables is found to be similar across 25 OECD countries, their short-term dynamics are found to be mixed in nature. This is attributed to varying levels of trade openness and technological progress in OECD countries. Since this is a pioneer study that investigates the issue, the findings are completely new and they make a significant contribution to renewable energy literature as well as relevant policy development.


2017 ◽  
Vol 4 (1) ◽  
pp. 112 ◽  
Author(s):  
John Vourdoubas

European buildings account for large amounts of energy consumption and CO2 emissions and current EU policies target in decreasing their energy consumption and subsequent CO2 emissions. Realization of a small, grid-connected, residential building with zero CO2 emissions due to energy use in Crete, Greece shows that this can be easily achieved. Required heat and electricity in the building were generated with the use of locally available renewable energies including solar energy and solid biomass. Annual energy consumption and on-site energy generation were balanced over a year as well as the annual electricity exchange between the building and the grid. Technologies used for heat and power generation included solar-thermal, solar-PV and solid-biomass burning which are reliable, mature and cost-effective. Annual energy consumption in the 65 m2 building was 180 KWh/m2 and its annual CO2 emissions were 84.67 kgCO2/m2. The total capital cost of the required renewable energy systems was estimated at approximately 10.77% of its total construction cost, and the required capital investments in renewable energy systems, in order to achieve the goal of a residential building with zero CO2 emissions due to energy use, were 1.65 € per kgCO2, saved annually. The results of this study prove that the creation of zero CO2 emissions buildings is technically feasible, economically attractive and environmentally friendly. Therefore they could be used to create future policies promoting the creation of this type of building additionally to the existing policies promoting near-zero energy buildings.


2012 ◽  
pp. 73-77
Author(s):  
Orsolya Nagy

Due to the exhaustion of the fossile fuel reserves of the Earth, the increase of fossile fuel prices and the difficulties concerning stable fuel supply, the increase of electricity production from renewable energy sources has a special strategic importance. In this study, I am going to evaluate the circumstances of the production and use of renewable energy sources in Hungary and in the European Union. I present the Hungarian economic, energy policy-related and social circumstances which make it necessary to support renewable energy production. I am going to give an overview on the related EU strategies concerning the sector and the Hungarian development plan in this field. I pay particular attention to the examination of development opportunities and the R&D activities going on in this area in Hungary, as well as the efficiency of the means used to improve renewable energy use.


Sign in / Sign up

Export Citation Format

Share Document