scholarly journals TFP Technology As Theadvanced Method Of Manufacture Of 3D Reinforced Preforms Frompolymer Composite Materials

Author(s):  
Nelyub Vladimir Aleksandrovich Et al.

This paper contains an overview of world trends in the development of the TFP technologyenabling 3D printing of carbon fiber reinforced plastics. The review of the equipment used for the automated preformpatching is included. Primary factors restraining the large-scale implementation of the TFP technology in the manufacture are identified, and prospective research trends for further development of the technology are proposed.

2016 ◽  
Vol 10 (3) ◽  
pp. 334-340 ◽  
Author(s):  
Shigehiko Sakamoto ◽  
◽  

Carbon Fiber Reinforced Plastics (CFRP) is well known as a Carbon Fiber Reinforced Plastics (CFRP) is well known as a difficult-to-cut material that has very strong physical and mechanical characteristics. Drilling technique of CFRP that is one of the most important cutting operations is currently carried out in the aviation and automotive industries, among others. Parts manufactured from CFRP have many precision holes used as rivet holes and for various purposes. There are typicaly many problems involved in the precision drilling processes of CFRP plate such as burrs, chippings and delaminations of composite materials, and the rapid wear of the drilling tools. In this research study, various twist drill bits, square end mills and ball noses end mills made of materials including cemented-carbide, TiAlN PVD-coated cemented carbide, Diamond-Like Carbon (DLC) coated cemented carbide and high-speed steel, are tested. CFRP drilling tests without coolant are carried out on vertical machining centers. It is found that the ball nose end mill is the most suitable for drilling CFRP composite materials.


2018 ◽  
Vol 913 ◽  
pp. 558-563 ◽  
Author(s):  
Wei Dong Zhou ◽  
Jian Sheng Chen

3D printing of carbon fiber reinforced plastics can produce lightweight components with higher efficiency and more complex structure. For the short carbon fiber reinforced plastics, the composites are firstly made by compounding, then they are processed to filaments, powders or other needed forms, finally the components are printed by Fused Deposition Modeling (FDM), Selected Laser Sintering (SLS) or other methods. The tensile strength of the nylon-based component is more than 70 MPa. Companies such as EOS, Stratasys and Farsoon can provide the materials and equipments. For the continuous carbon fiber reinforced plastics, the divided carbon fibers and plastic filaments or impregnated carbon fiber filaments are firstly prepared, then the components are printed by FDM or other methods. The average tensile strength of the nylon-based component is more than 200 MPa. Companies such as Markforged and Arevo Labs have commercialized the 3D printing equipment/platform for the continuous fiber reinforced plastics.


2021 ◽  
Vol 29 (1) ◽  
pp. 89-92
Author(s):  
B.V. Boytsov ◽  
◽  
L.R. Vishnyakov ◽  
M.E. Kazakov ◽  
V.V. Krivonos ◽  
...  

The problem of recycling waste from mechanical processing of polymer composite materials – carbon fiber reinforced plastics - is considered. It is proposed to compact the dust-like fragments into secondary friction materials, which were tested in air and water.


2006 ◽  
Vol 326-328 ◽  
pp. 1055-1058
Author(s):  
Kil Sung Lee ◽  
In Young Yang

Currently, stacking condition related to the energy absorption of composite materials is being considered as an issue for the structural efficiency and safety of automobiles, aerospace vehicles, trains, ships even elevators during collision. In particular, CFRP (carbon fiber reinforced plastics) composite materials have found wide applicability because of their inherent design flexibility and improved material properties. The most important objective in designing automobiles is currently to focus on environment-friendly aspect and safety performance aspect. Therefore, the designing automobile should be more concerned on the aspect of securing safety performance, but at the same time, it also should consider reducing weight of automobile structural member. In this study, CFRP (Carbon Fiber Reinforced Plastics) side members with single-hat-section shaped were manufactured. The axial static collapse tests were performed for the members using universal testing machine, and the collapse mode and energy absorption characteristics were analyzed according to stacking condition such as fiber orientation angle and shape of the section.


Sign in / Sign up

Export Citation Format

Share Document