scholarly journals The effect of different models of closed-loop transfer functions on the inter-harmonic oscillation characteristics of grid-connected PMSG

Author(s):  
Omid Bagherieh ◽  
Prateek Shah ◽  
Roberto Horowitz

A data driven control design approach in the frequency domain is used to design track following feedback controllers for dual-stage hard disk drives using multiple data measurements. The advantage of the data driven approach over model based approach is that, in the former approach the controllers are directly designed from frequency responses of the plant, hence avoiding any model mismatch. The feedback controller is considered to have a Sensitivity Decoupling Structure. The data driven approach utilizes H∞ and H2 norms as the control objectives. The H∞ norm is used to shape the closed loop transfer functions and ensure closed loop stability. The H2 norm is used to constrain and/or minimize the variance of the relevant signals in time domain. The control objectives are posed as a locally convex optimization problem. Two design strategies for the dual-stage hard disk drive are presented.


1984 ◽  
Vol 28 (04) ◽  
pp. 229-237 ◽  
Author(s):  
Touvia Miloh

Lagrange's equations of motion, describing the motion of several bodies on or below a free surface, are here derived from Hamilton's variational principle. The Lagrangian density is obtained by extending Luke's principle to the wave-radiation problem, and the hydrodynamical loads on the bodies are expressed in terms of the Lagrangian density and its derivatives with respect to the generalized coordinates of the bodies. First we consider a forced harmonic oscillation without a forward speed and then we discuss the case of the same oscillatory motion superimposed on arbitrary steady motion. In both cases we employ Lagrange's method to derive the transfer functions between the generalized forces and the amplitudes of the harmonic motions, in terms of added mass, damping, and the hydrostatic restoring coefficients. The case of a steady forward motion, for which the transfer function is already known, is obtained as a particular case of the general solution.


2018 ◽  
Vol 2018 ◽  
pp. 1-16
Author(s):  
Yu-Jun Mao ◽  
Chi-Seng Lam ◽  
Sai-Weng Sin ◽  
Man-Chung Wong ◽  
Rui Paulo Martins

Among various modeling methods for DC-DC converters introduced in the past two decades, the state-space averaging (SSA) and the circuit averaging (CA) are the most general and popular exhibiting high accuracy. However, their deduction approaches are not entirely equivalent since they incorporate different averaging processes, thus yielding different small signal transfer functions even under identical operating conditions. Some research studies claimed that the improved SSA can obtain the highest accuracy among all the modeling methods, but this paper discovers and clearly verifies that this is not the case. In this paper, we first review and study these two modeling methods for various DC-DC converters operating in the discontinuous conduction mode (DCM). We also streamline the general model-deriving processes for DC-DC converters, and test and compare the accuracy of these two methods under various conditions. Finally, we provide a selection strategy for a high-accuracy modeling method for different DC-DC converters operating in DCM and verified by simulations, which revealed necessary and beneficial for designing a more accurate DCM closed-loop controller for DC-DC converters, thus achieving better stability and transient response.


Author(s):  
Yingbai Xie ◽  
Xiuzhi Huang ◽  
Liyong Lun ◽  
Ganglei Sun

The linear compressor is driven by a linear motor. Because it has no crankcase, the piston motion and its control of the linear compressor are differing from that of the conventional reciprocating compressor. For a moving coil linear compressor, mechanical and electromagnetism system are modeled. The open loop and closed loop transfer functions of the system in no-load condition are obtained derived from these equations. The Matlab software is applied to analyze the stability, time domain and frequency domain of the system. Simulation results show that the linear compressor is stable, but the overshoot is relative high, which must be adjusted. This conclusion will be benefit for the design of the idling start of the moving coil linear compressor.


1997 ◽  
Vol 273 (2) ◽  
pp. H1024-H1031 ◽  
Author(s):  
T. Kawada ◽  
M. Sugimachi ◽  
T. Sato ◽  
H. Miyano ◽  
T. Shishido ◽  
...  

In the circulatory system, a change in blood pressure operates through the baroreflex to alter sympathetic efferent nerve activity, which in turn affects blood pressure. Existence of this closed feedback loop makes it difficult to identify the baroreflex open-loop transfer characteristics by means of conventional frequency domain approaches. Although several investigators have demonstrated the advantages of the time domain approach using parametric models such as the autoregressive moving average model, specification of the model structure critically affects their results. Thus we investigated the applicability of a nonparametric closed-loop identification technique to the carotid sinus baroreflex system by using an exogenous perturbation according to a binary white-noise sequence. To validate the identification method, we compared the transfer functions estimated by the closed-loop identification with those estimated by open-loop identification. The transfer functions determined by the two identification methods did not differ statistically in their fitted parameters. We conclude that exogenous perturbation to the baroreflex system enables us to estimate the open-loop baroreflex transfer characteristics under closed-loop conditions.


2017 ◽  
Vol 50 (1) ◽  
pp. 12847-12852 ◽  
Author(s):  
Vittorio De Iuliis ◽  
Alfredo Germani ◽  
Costanzo Manes

2019 ◽  
Vol 20 (9) ◽  
pp. 532-541 ◽  
Author(s):  
V. I. Lovchakov ◽  
O. A. Shibyakin

The solution of the so-called problem of speed of response in one coordinate, which has important theoretical and practical importance, is investigated. It is formulated with reference to linear one-dimensional high-order control objects described by a system of ordinary differential equations in a certain phase space. The transient time tnn of the system designed is understood in a sense of the classical control theory in reference to one (output) coordinate of the object and is determined by using the zone Δ = σ* = 4.321 %, which equals the given (desirable) value of the overshoot of the system synthesized. This overshoot corresponds with the speed of response oscillating second-order element with a damping coefficient ζ= = 2 2 0,7071 / . It is indispensable to mention here that the equation Δ = σ is one of the necessary conditions for the maximum speed of response of the system with the oscillating character of transient processes. In accordance to this the task of the speed of response by one coordinate can be described by the following generalized formulation: one must find the linear algorithm of the feedback signal, which provides a preset order of the astatism na for the closed-loop control system and converts the control object from a zero state into a final state, which is determined by the constant signal of the input, with a minimal time value of the transient processes of the system tnn and the preset value of the overshoot σ m σ* while fulfilling the constraint of the control signal |u(t)| m umax. Nowadays the task mentioned is approximately solved by the algebraic method of the synthesis of linear control systems with the determination of a desirable transfer function of the designed closed-loop system based on model normalized transfer functions (NTF). In the works by Kim D. P. there was carried out the analysis of four types of normalized transfer functions characterized by the increased speed of response. In this work two additional types of normalized transfer functions are suggested, in comparison with mentioned NTF they have the increased speed of response in case of the preset value of the overregulation σ* = 4.321 %. On their basis and using the methodology of the modal control the method of the synthesis of the controller is suggested; this method ensures the transient time of the designed system to be close to the minimum in case of the preset constraint of the overregulation and the value of the control signal. It needs to be emphasized that in contrast to the algebraic method of the synthesis, this method is applied to a wider range of control objects: as to minimal-phased objects as to non-minimum-phased ones; as to the objects containing zeros as to those without them. The method is illustrated by an example of synthesis of control system speed of response of the fourth order, containing the results of its modeling.


1995 ◽  
Vol 05 (04) ◽  
pp. 747-755 ◽  
Author(s):  
MARIAN K. KAZIMIERCZUK ◽  
ROBERT C. CRAVENS, II

An experimental verification of previously derived small-signal low-frequency open- and closed-loop characteristics and step responses of a voltage-mode-controlled pulse-width-modulated (PWM) boost DC–DC converter is presented. The Bode plots of the voltage transfer function of the control circuit, the converter and the PWM modulator, the open-loop control-to-output and input-to-output transfer functions, the loop gain, and the closed-loop control-to-output and input-to-output transfer functions are measured. The step responses to the changes in the input voltage, the duty cycle, and the reference voltage are measured. The theoretical results were in good agreement with the measured results. The small-signal model of the converter is experimentally verified.


1958 ◽  
Vol 5 (3) ◽  
pp. 289-297 ◽  
Author(s):  
N. R. Goodman ◽  
S. Katz

Sign in / Sign up

Export Citation Format

Share Document