scholarly journals Parameter identification of static var compensator model using sensitivity analysis and improved whale optimization algorithm

Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2367 ◽  
Author(s):  
Tan Ding ◽  
Li Chang ◽  
Chaoshun Li ◽  
Chen Feng ◽  
Nan Zhang

For solving the parameter optimization problem of a hydraulic turbine governing system (HTGS) with a delayed water hammer (DWH) effect, a Mixed-Strategy-based Whale Optimization Algorithm (MSWOA) is proposed in this paper, in which three improved strategies are designed and integrated to promote the optimization ability. Firstly, the movement strategies of WOA have been improved to balance the exploration and exploitation. In the improved movement strategies, a dynamic ratio based on improved JAYA algorithm is applied on the strategy of searching for prey and a chaotic dynamic weight is designed for improving the strategies of bubble-net attacking and encircling prey. Secondly, a guidance of the elite’s memory inspired by Particle swarm optimization (PSO) is proposed to lead the movement of the population to accelerate the convergence speed. Thirdly, the mutation strategy based on the sinusoidal chaotic map is employed to avoid prematurity and local optimum points. The proposed MSWOA are compared with six popular meta-heuristic optimization algorithms on 23 benchmark functions in numerical experiments and the results show that the MSWOA has achieved significantly better performance than others. Finally, the MSWOA is applied on parameter identification problem of HTGS with a DWH effect, and the comparative results confirm the effectiveness and identification accuracy of the proposed method.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Xiaojia Ye ◽  
Wei Liu ◽  
Hong Li ◽  
Mingjing Wang ◽  
Chen Chi ◽  
...  

The whale optimization algorithm (WOA) is a powerful swarm intelligence method which has been widely used in various fields such as parameter identification of solar cells and PV modules. In order to better balance the exploration and exploitation of WOA, we propose a novel modified WOA (MWOA) in which both the mutation strategy based on Levy flight and a local search mechanism of pattern search are introduced. On the one hand, Levy flight can make the algorithm get rid of the local optimum and avoid stagnation; thus, it is able to prevent the algorithm from losing diversity and to increase the global search capability. On the other hand, pattern search, a direct search method, has not only high convergence rate but also good stability, which can boost the local optimization ability of the WOA. Therefore, the combination of these two mechanisms can greatly improve the capability of WOA to obtain the best solution. In addition, MWOA may be employed to estimate parameters in single diode model (SDM), double diode model (DDM), and PV modules and to identify unknown parameters of two different types of PV modules under diverse light irradiance and temperature conditions. The analytical results demonstrate the validity and the practicality of MWOA for estimating parameters of solar cells and PV modules.


Author(s):  
Nitin Chouhan ◽  
Uma Rathore Bhatt ◽  
Raksha Upadhyay

: Fiber Wireless Access Network is the blend of passive optical network and wireless access network. This network provides higher capacity, better flexibility, more stability and improved reliability to the users at lower cost. Network component (such as Optical Network Unit (ONU)) placement is one of the major research issues which affects the network design, performance and cost. Considering all these concerns, we implement customized Whale Optimization Algorithm (WOA) for ONU placement. Initially whale optimization algorithm is applied to get optimized position of ONUs, which is followed by reduction of number of ONUs in the network. Reduction of ONUs is done such that with fewer number of ONUs all routers present in the network can communicate. In order to ensure the performance of the network we compute the network parameters such as Packet Delivery Ratio (PDR), Total Time for Delivering the Packets in the Network (TTDPN) and percentage reduction in power consumption for the proposed algorithm. The performance of the proposed work is compared with existing algorithms (deterministic and centrally placed ONUs with predefined hops) and has been analyzed through extensive simulation. The result shows that the proposed algorithm is superior to the other algorithms in terms of minimum required ONUs and reduced power consumption in the network with almost same packet delivery ratio and total time for delivering the packets in the network. Therefore, present work is suitable for developing cost-effective FiWi network with maintained network performance.


Author(s):  
Quan Liu ◽  
Yang Liu ◽  
Congsheng Zhang ◽  
Zhili Ruan ◽  
Wei Meng ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2628
Author(s):  
Mengxing Huang ◽  
Qianhao Zhai ◽  
Yinjie Chen ◽  
Siling Feng ◽  
Feng Shu

Computation offloading is one of the most important problems in edge computing. Devices can transmit computation tasks to servers to be executed through computation offloading. However, not all the computation tasks can be offloaded to servers with the limitation of network conditions. Therefore, it is very important to decide quickly how many tasks should be executed on servers and how many should be executed locally. Only computation tasks that are properly offloaded can improve the Quality of Service (QoS). Some existing methods only focus on a single objection, and of the others some have high computational complexity. There still have no method that could balance the targets and complexity for universal application. In this study, a Multi-Objective Whale Optimization Algorithm (MOWOA) based on time and energy consumption is proposed to solve the optimal offloading mechanism of computation offloading in mobile edge computing. It is the first time that MOWOA has been applied in this area. For improving the quality of the solution set, crowding degrees are introduced and all solutions are sorted by crowding degrees. Additionally, an improved MOWOA (MOWOA2) by using the gravity reference point method is proposed to obtain better diversity of the solution set. Compared with some typical approaches, such as the Grid-Based Evolutionary Algorithm (GrEA), Cluster-Gradient-based Artificial Immune System Algorithm (CGbAIS), Non-dominated Sorting Genetic Algorithm III (NSGA-III), etc., the MOWOA2 performs better in terms of the quality of the final solutions.


Author(s):  
Chunzhi Wang ◽  
Min Li ◽  
Ruoxi Wang ◽  
Han Yu ◽  
Shuping Wang

AbstractAs an important part of smart city construction, traffic image denoising has been studied widely. Image denoising technique can enhance the performance of segmentation and recognition model and improve the accuracy of segmentation and recognition results. However, due to the different types of noise and the degree of noise pollution, the traditional image denoising methods generally have some problems, such as blurred edges and details, loss of image information. This paper presents an image denoising method based on BP neural network optimized by improved whale optimization algorithm. Firstly, the nonlinear convergence factor and adaptive weight coefficient are introduced into the algorithm to improve the optimization ability and convergence characteristics of the standard whale optimization algorithm. Then, the improved whale optimization algorithm is used to optimize the initial weight and threshold value of BP neural network to overcome the dependence in the construction process, and shorten the training time of the neural network. Finally, the optimized BP neural network is applied to benchmark image denoising and traffic image denoising. The experimental results show that compared with the traditional denoising methods such as Median filtering, Neighborhood average filtering and Wiener filtering, the proposed method has better performance in peak signal-to-noise ratio.


2020 ◽  
pp. 1-12
Author(s):  
Zheping Yan ◽  
Jinzhong Zhang ◽  
Jialing Tang

The accuracy and stability of relative pose estimation of an autonomous underwater vehicle (AUV) and a target depend on whether the characteristics of the underwater image can be accurately and quickly extracted. In this paper, a whale optimization algorithm (WOA) based on lateral inhibition (LI) is proposed to solve the image matching and vision-guided AUV docking problem. The proposed method is named the LI-WOA. The WOA is motivated by the behavior of humpback whales, and it mainly imitates encircling prey, bubble-net attacking and searching for prey to obtain the globally optimal solution in the search space. The WOA not only balances exploration and exploitation but also has a faster convergence speed, higher calculation accuracy and stronger robustness than other approaches. The lateral inhibition mechanism can effectively perform image enhancement and image edge extraction to improve the accuracy and stability of image matching. The LI-WOA combines the optimization efficiency of the WOA and the matching accuracy of the LI mechanism to improve convergence accuracy and the correct matching rate. To verify its effectiveness and feasibility, the WOA is compared with other algorithms by maximizing the similarity between the original image and the template image. The experimental results show that the LI-WOA has a better average value, a higher correct rate, less execution time and stronger robustness than other algorithms. The LI-WOA is an effective and stable method for solving the image matching and vision-guided AUV docking problem.


Sign in / Sign up

Export Citation Format

Share Document