scholarly journals Multiple sclerosis: environmental risk factors

1998 ◽  
Vol XXX (1-2) ◽  
pp. 40-42
Author(s):  
Enrico Granieri ◽  
Ilaria Casetta

Multiple sclerosis is a disease of unknown etiology characterized by inflammory demyelination of the brain and spinal cord. Epidemiological investigations play important role in study of multiple sclerosis. Geographical distribution of the disease has been described in terms of prevalence and incidence. The possible role of environmental factors as a cause of multiple sclerosis had been hypothesized with observation of unequal geographic distribution of the disease. More interesting, in terms of their biological significance, are attempts to identify associations between multiple sclerosis and situations or events wich could cause blood-brain barrier damages, such as trauma or toxic exposures.

2021 ◽  
Vol 100 (1) ◽  
pp. 83-89
Author(s):  
S.B. Berezhanskaya ◽  
◽  
E.A. Lukianova ◽  
M.K. Abduragimova ◽  
◽  
...  

Erythropoietin is recognized as a pluripotent glycoprotein with unique biochemical and epigenetic properties that are important for fetal growth and development, as well as in critical conditions in subsequent periods of ontogenesis. In recent decades, researchers and clinicians have increased interest in the problem of the biological significance of erythropoietin, which can form the basis for constructing algorithms for early prognosis and diagnosis, optimizing the treatment of pathology of the perinatal period, including perinatal hypoxic-ischemic damage to the brain and spinal cord, which are at risk of disability and have a risk of disability significant role in neonatology and perinatal neurology.


2021 ◽  
Vol 2 (2) ◽  
pp. 100-106
Author(s):  
Aleksandra I. Pavlyuchkova ◽  
Aleksey S. Kotov

In childhood, various infectious, autoimmune, genetic diseases can manifest. We present a case of fatal encephalomyelopolyradiculoneuritis of unknown etiology in a 9-year-old child. Patient N.K. in February 2019, noted an increase in temperature to subfebrile values, received symptomatic and antibiotic therapy without effect. An increase in protein and lymphocytes was found in the cerebrospinal fluid. According to MRI data, the emergence of more and more foci of the pathological signal in the brain and spinal cord, cranial nerves and nerve roots of the lumbar plexus was noted. Known infectious and autoimmune diseases were excluded. Despite active therapy with glucocorticoids, antibiotics, antiviral drugs, immunoglobulin, the disease continued to progress, and the patient died in April 2020.


Physiology ◽  
2019 ◽  
Vol 34 (3) ◽  
pp. 216-229 ◽  
Author(s):  
Joline E. Brandenburg ◽  
Matthew J. Fogarty ◽  
Gary C. Sieck

Spastic cerebral palsy (CP), despite the name, is not consistently identifiable by specific brain lesions. CP animal models focus on risk factors for development of CP, yet few reproduce the diagnostic symptoms. Animal models of CP must advance beyond risk factors to etiologies, including both the brain and spinal cord.


2017 ◽  
Vol 2017 ◽  
pp. 1-4 ◽  
Author(s):  
Mahmood Mubasher ◽  
Aseel Sukik ◽  
Ahmed Hassan El Beltagi ◽  
Ali Rahil

A 23-year-old lady presented with vertigo and imbalance in walking, blurring of vision, diplopia, and headache, in addition to numbness in the lower limbs over a period of six days. On examination patient had nystagmus, ataxia, positive Romberg test, and hyperreflexia. MRI examination of the brain and spinal cord showed evidence of faint bright signal intensity foci in T2/FLAIR involving bilateral cerebral hemispheres, subcortical deep white matter, bilateral thalami, posterior pons and left brachium pontis, and basal ganglia, with small nodular enhancement that aligned along curvilinear structures; those lesions also were apparent along the spinal cord at multiple levels. The clinical and radiological features suggested CLIPPERS (chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids) syndrome. Symptoms improved dramatically with high dose oral corticosteroids. Our report addresses the radiological and clinical pattern of a case of CLIPPERS rhombencephalitis, with added superior and inferior extension to involve the brain and spinal cord, which is to emphasize the importance of raising the awareness of this disease and the combined role of radiologist and physicians for the diagnosis of this potentially treatable entity, responsive to glucocorticosteroid immunosuppression.


2016 ◽  
Vol 28 (2) ◽  
pp. 160
Author(s):  
V. Pirro ◽  
P. O. Favaron ◽  
C. R. Ferreira ◽  
L. S. Eberlin ◽  
R. S. Barreto ◽  
...  

Even though the role of lipids in pandemic diseases such as obesity and diabetes is a focus of increasing research, the role of lipids during organogenesis, when diverse diseases may be triggered, is unexplored. Also, pig embryonic tissues represent an attractive option for organ transplantation. This study introduces a detailed morphological analysis of swine fetal tissues with matching location of lipids acquired by desorption electrospray ionization mass spectrometry (DESI-MS) imaging for the study of differential distribution of free fatty acids (FFA) and phospholipids (PL) in specific organs during fetal development. Samples from a pig fetuses around Day 50 of pregnancy were sectioned at a cryotome and mounted onto glass slides. Fixative agents were not used. DESI-MS images were run with a step size of 300 µm using a morphologically friendly (non-destructive) solvent combination, namely dimethylformamide/acetonitrile 1 : 1 (v/v). Data were acquired in the negative ion mode in the m/z range of 150 to 1000 from different sections representing the whole swine fetus body. Ion images were constructed using BioMAP software. After imaging, the whole-body tissue samples were stained with hematoxylin and eosin (H&E) and were overlaid to the DESI-MS lipid images. Differential distribution of FFA, phosphatidylcholines (PC), phosphatidylserines (PS), sulphatides (ST), and phosphatidylinositols (PI) was observed among organs, especially on nervous and circulatory systems, and digestive glands. Most lipids concentrated in the brain, spinal cord, and digestive glands such as the liver. For example, arachidonic acid was most abundant in neuronal tissue, whereas docosahexaenoic acid predominated in the liver and digestive glands. Distribution of PS (36 : 1) of m/z 788 was observed in all tissues except for the digestive system, but PS (40 : 6) of m/z 834.7 was exclusive of brain and spinal cord. Lipids related to brain and spinal cord were mostly polyunsaturated fatty acids as well as specific PS lipids. Arachidonic and eicosatrienoic acids are more concentrated in hindbrain and spinal cord, whereas PS was more abundant in the brain than in the spinal cord. There is no information on PS chemical composition during brain and spinal cord development, but PS concentration in the nervous tissue membranes varies with age, brain areas, cell type, and subcellular components. Several reports indicate that alteration in PS synthesis might participate in the mechanism of brain damage. Also, PS has been found to be altered in brain tumours. Oleic acid, fatty acid dimers, and the signalling lipid PI (38 : 3) were most significant for the digestive system and liver. Liver is one of the main organs involved in fatty acid metabolism (besides adipose tissue and muscle). By overlying morphological and molecular information, lipids seem to be a major player in the organogenesis process.


Sign in / Sign up

Export Citation Format

Share Document