scholarly journals Serological level of transforming growth factor-β as a predictive biomarker of aortic enlargement in patients with Marfan syndrome

2017 ◽  
Vol 8 (1) ◽  
pp. 61-66
Author(s):  
Andrey S Rudoy ◽  
Alexey M Uryvaev

Marfan syndrome - an inherited, autosomal dominant disease with an expected rate of 3-5/10 000 or fraction of 20-25% of new mutations, accompanied by violation of the connective tissue that occurs as a result of gene mutations FBN1, coding for the synthesis of fibrillin-1, performing the most important role in the modulation physiological bioavailability TGF-β (transforming growth factor-β). Prediction of aortic rupture is based on the identification of risk factors: family history, the absolute size of the aortic root, the rate of expansion of the aorta, which are based on the results of the history and techniques of imaging ultrasound, CT, MRI. At the same time there is a chance of developing aortic rupture under normal aortic root size and the absence of any risk factors, as well as after the prophylactic prosthetic aortic root. This makes it necessary to search for alternative prognostic markers, threatening bundle and rupture of the aorta. Article verified the predictive role of TGF-β as a serological biomarker for assessing the extension of the aortic root in patients with Marfan syndrome (n = 23, F : M / 7 : 16; 33 ± 9.3 years). The article describes the patterns between TGF-β and the size and the reconstruction of the aneurysm of the thoracic aorta. It was found that elevated levels of serum TGF-β1 (49.1 ng/ml Vs 29.15 ng/ml in the control, p < 0.05) in patients with MS diagnosed with an extension of the aortic root (Z > 1.96) can serve as a serological marker to poor prognosis, accompanied by an increase in the size of the aortic root. In patients with normal-sized aorta, and after aortic reconstruction serum TGFβ1 not elevated. Serum TGFβ may be a promising target for therapeutic, diagnostic and prognostic tactics which are not based on imaging techniques.

2000 ◽  
Vol 74 (5) ◽  
pp. 2443-2446 ◽  
Author(s):  
Jingwu Xu ◽  
Ali Ahmad ◽  
James F. Jones ◽  
Riccardo Dolcetti ◽  
Emanuela Vaccher ◽  
...  

ABSTRACT Transforming growth factor β (TGF-β) is an immunosuppressive cytokine which can induce immunoglobulin A (IgA) switch and Epstein-Barr virus (EBV) replication in latently infected cells. Here we report elevated serum levels of TGF-β in various EBV-associated diseases correlating positively with EBV-specific IgA titers and negatively with IgM titers, suggesting a role for this cytokine in the pathogenesis of these diseases.


2020 ◽  
Vol 9 (20) ◽  
Author(s):  
Yasushi Tashima ◽  
Hao He ◽  
Jason Z. Cui ◽  
Albert J. Pedroza ◽  
Ken Nakamura ◽  
...  

Background Male patients with Marfan syndrome have a higher risk of aortic events and root dilatation compared with females. The role androgens play during Marfan syndrome aneurysm development in males remains unknown. We hypothesized that androgens potentiate transforming growth factor beta induced Erk (extracellular‐signal‐regulated kinase)/Smad activation, contributing to aneurysm progression in males. Methods and Results Aortic diameters in Fbn1 C1039G/+ and littermate wild‐type controls were measured at ages 6, 8, 12, and 16 weeks. Fbn1 C1039G/+ males were treated with (1) flutamide (androgen receptor blocker) or (2) vehicle control from age 6 to 16 weeks and then euthanized. p‐Erk1/2, p‐Smad2, and matrix metalloproteinase (MMP) activity were measured in ascending/aortic root and descending aorta specimens. Fbn1 C1039G/+ male and female ascending/aortic root‐derived smooth muscle cells were utilized in vitro to measure Erk/Smad activation and MMP‐2 activity following dihydrotestosterone, flutamide or transforming growth factor beta 1 treatment. Fbn1 C1039G/+ males have increased aneurysm growth. p‐Erk1/2 and p‐Smad2 were elevated in ascending/aortic root specimens at age 16 weeks. Corresponding with enhanced Erk/Smad signaling, MMP‐2 activity was higher in Fbn1 C1039G/+ males. In vitro smooth muscle cell studies revealed that dihydrotestosterone potentiates transforming growth factor beta‐induced Erk/Smad activation and MMP‐2 activity, which is reversed by flutamide treatment. Finally, in vivo flutamide treatment reduced aneurysm growth via p‐Erk1/2 and p‐Smad2 reduction in Fbn1 C1039G/+ males. Conclusions Fbn1 C1039G/+ males have enhanced aneurysm growth compared with females associated with enhanced p‐Erk1/2 and p‐Smad2 activation. Mechanistically, in vitro smooth muscle cell studies suggested that dihydrotestosterone potentiates transforming growth factor beta induced Erk/Smad activation. As biological proof of concept, flutamide treatment attenuated aneurysm growth and p‐Erk1/2 and p‐Smad2 signaling in Fbn1 C1039G/+ males.


Circulation ◽  
2009 ◽  
Vol 120 (6) ◽  
pp. 526-532 ◽  
Author(s):  
Peter Matt ◽  
Florian Schoenhoff ◽  
Jennifer Habashi ◽  
Tammy Holm ◽  
Christel Van Erp ◽  
...  

2013 ◽  
Vol 168 (3) ◽  
pp. 2441-2446 ◽  
Author(s):  
Romy Franken ◽  
Alexander W. den Hartog ◽  
Vivian de Waard ◽  
Leo Engele ◽  
Teodora Radonic ◽  
...  

2017 ◽  
Vol 9 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Siobhan Bacon ◽  
Rachel Crowley

In the last decade, there have been a number of significant advances made in the field of rare bone diseases. In this review, we discuss the expansion of the classification system for osteogenesis imperfecta (OI) and the resultant increase in therapeutic options available for management of OI. Bisphosphonates remain the most widely used intervention for OI, although the effect on fracture rate reduction is equivocal. We review the other therapies showing promising results, including denosumab, teriparatide, sclerostin, transforming growth factor β inhibition and gene targeted approaches. X-linked hypophosphataemia (XLH) is the most common heritable form of osteomalacia and rickets caused by a mutation in the phosphate regulating endopeptidase gene resulting in elevated serum fibroblast growth factor 23 (FGF23) and decreased renal phosphate reabsorption. The traditional treatment is phosphate replacement. We discuss the development of a human anti-FGF23 antibody (KRN23) as a promising development in the treatment of XLH. The current management of primary hypoparathyroidism is replacement with calcium and active vitamin D. This can be associated with under or over replacement and its inherent complications. We review the use of recombinant parathyroid hormone (1–84), which can significantly reduce the requirements for calcium and vitamin D resulting in greater safety and quality of life for individuals with hypoparathyroidism. The use of receptor activator of nuclear factor κB ligand infusions in the treatment of a particular form of osteopetrosis and enzyme replacement therapy for hypophosphatasia are also discussed.


Sign in / Sign up

Export Citation Format

Share Document