scholarly journals Site Characterization at Downhole Arrays by Joint Inversion of Dispersion Data and Acceleration Time Series

2020 ◽  
Vol 110 (3) ◽  
pp. 1323-1337 ◽  
Author(s):  
Elnaz Seylabi ◽  
Andrew M. Stuart ◽  
Domniki Asimaki

ABSTRACT We present a sequential data assimilation algorithm based on the ensemble Kalman inversion to estimate the near-surface shear-wave velocity profile and damping; this is applicable when heterogeneous data and a priori information that can be represented in forms of (physical) equality and inequality constraints in the inverse problem are available. Although noninvasive methods, such as surface-wave testing, are efficient and cost-effective methods for inferring an VS profile, one should acknowledge that site characterization using inverse analyses can yield erroneous results associated with the lack of inverse problem uniqueness. One viable solution to alleviate the unsuitability of the inverse problem is to enrich the prior knowledge and/or the data space with complementary observations. In the case of noninvasive methods, the pertinent data are the dispersion curve of surface waves, typically resolved by means of active source methods at high frequencies and passive methods at low frequencies. To improve the inverse problem suitability, horizontal-to-vertical spectral ratio data are commonly used jointly with the dispersion data in the inversion. In this article, we show that the joint inversion of dispersion and strong-motion downhole array data can also reduce the margins of uncertainty in the VS profile estimation. This is because acceleration time series recorded at downhole arrays include both body and surface waves and therefore can enrich the observational data space in the inverse problem setting. We also show how the proposed algorithm can be modified to systematically incorporate physical constraints that further enhance its suitability. We use both synthetic and real data to examine the performance of the proposed framework in estimation of the VS profile and damping at the Garner Valley downhole array and compare them against the VS estimations in previous studies.




2016 ◽  
Vol 121 (11) ◽  
pp. 8217-8238 ◽  
Author(s):  
Kevin M. Ward ◽  
George Zandt ◽  
Susan L. Beck ◽  
Lara S. Wagner ◽  
Hernando Tavera


2015 ◽  
Author(s):  
Tongju Gong* ◽  
Miao Liu ◽  
Yiming Wang ◽  
Zhiwei Zhu ◽  
Baoqing Zhang


1992 ◽  
Vol 114 (1) ◽  
pp. 1-8
Author(s):  
T. C. Thuestad ◽  
F. G. Nielsen

The Oseberg jacket was installed at the Oseberg field in the North Sea during the summer of 1987 and the production started on December 1, 1988. On March 6, 1988, a submarine accidentally impacted with the Oseberg jacket. This paper presents results from the evaluation of the importance of the damage to the overall structural safety. A nonlinear progressive collapse analysis is applied for the safety check. The theoretical computations are verified through evaluation of strain and acceleration time series recorded during the submarine impact. The reduction in the overall structural capacity of the jacket was in the order of 10 percent. However, the local member capacity was significantly reduced and it was necessary to remove the damaged member in order to obtain the initial level of safety.



2017 ◽  
Vol 33 (3) ◽  
pp. 875-894 ◽  
Author(s):  
Tadahiro Kishida ◽  
Danilo Di Giacinto ◽  
Giuseppe Iaccarino

Numerous time series for small-to-moderate-magnitude (SMM) earthquakes have been recorded in many regions. A uniformly-processed ground-motion database is essential in the development of regional ground-motion models. An automated processing protocol is useful in developing the database for these earthquakes especially when the number of recordings is substantial. This study compares a manual and an automated ground-motion processing methods using SMM earthquakes. The manual method was developed by the Pacific Earthquake Engineering Research Center to build the database of time series and associated ground-motion parameters. The automated protocol was developed to build a database of pseudo-spectral acceleration for the Kiban-Kyoshin network recordings. Two significant differences were observed when the two methods were applied to identical acceleration time series. First, the two methods differed in the criteria for the acceptance or rejection of the time series in the database. Second, they differed in the high-pass corner frequency used to filter noise from the acceleration time series. The influences of these differences were investigated on ground-motion parameters to elucidate the quality of ground-motion database for SMM earthquakes.



Author(s):  
M.N. Ustinin ◽  
S.D. Rykunov ◽  
A.I. Boyko ◽  
O.A. Maslova ◽  
K.D. Walton ◽  
...  

New method for the magnetic encephalography data analysis was proposed. The method transforms multichannel time series into the spatial structure of the human brain activity. In this paper we further develop this method to determine the dominant direction of the electrical sources of brain activity at each node of the calculation grid. We have considered the experimental data, obtained with three 275-channel magnetic encephalographs in New York University, McGill University and Montreal University. The human alpha rhythm phenomenon was selected as a model object. Magnetic encephalograms of the brain spontaneous activity were registered for 5-7 minutes in magnetically shielded room. Detailed multichannel spectra were obtained by the Fourier transform of the whole time series. For all spectral components, the inverse problem was solved in elementary current dipole model and the functional structure of the brain activity was calculated in the frequency band 8-12 Hz. In order to estimate the local activity direction, at the each node of calculation grid the vector of the inverse problem solution was selected, having the maximal spectral power. So, the 3D-map of the brain activity vector field was produced – the directional functional tomogram. Such maps were generated for 15 subjects and some common patterns were revealed in the directions of the alpha rhythm elementary sources. The proposed method can be used to study the local properties of the brain activity in any spectral band and in any brain compartment.





2019 ◽  
Author(s):  
Gabriel J. Bowen ◽  
Brenden Fisher-Femal ◽  
Gert-Jan Reichart ◽  
Appy Sluijs ◽  
Caroline H. Lear




2020 ◽  
Vol 16 (1) ◽  
pp. 65-78 ◽  
Author(s):  
Gabriel J. Bowen ◽  
Brenden Fischer-Femal ◽  
Gert-Jan Reichart ◽  
Appy Sluijs ◽  
Caroline H. Lear

Abstract. Paleoclimatic and paleoenvironmental reconstructions are fundamentally uncertain because no proxy is a direct record of a single environmental variable of interest; all proxies are indirect and sensitive to multiple forcing factors. One productive approach to reducing proxy uncertainty is the integration of information from multiple proxy systems with complementary, overlapping sensitivity. Mostly, such analyses are conducted in an ad hoc fashion, either through qualitative comparison to assess the similarity of single-proxy reconstructions or through step-wise quantitative interpretations where one proxy is used to constrain a variable relevant to the interpretation of a second proxy. Here we propose the integration of multiple proxies via the joint inversion of proxy system and paleoenvironmental time series models in a Bayesian hierarchical framework. The “Joint Proxy Inversion” (JPI) method provides a statistically robust approach to producing self-consistent interpretations of multi-proxy datasets, allowing full and simultaneous assessment of all proxy and model uncertainties to obtain quantitative estimates of past environmental conditions. Other benefits of the method include the ability to use independent information on climate and environmental systems to inform the interpretation of proxy data, to fully leverage information from unevenly and differently sampled proxy records, and to obtain refined estimates of proxy model parameters that are conditioned on paleo-archive data. Application of JPI to the marine Mg∕Ca and δ18O proxy systems at two distinct timescales demonstrates many of the key properties, benefits, and sensitivities of the method, and it produces new, statistically grounded reconstructions of Neogene ocean temperature and chemistry from previously published data. We suggest that JPI is a universally applicable method that can be implemented using proxy models of wide-ranging complexity to generate more robust, quantitative understanding of past climatic and environmental change.



Sign in / Sign up

Export Citation Format

Share Document