scholarly journals Three-dimensional full waveform inversion of short-period teleseismic wavefields based upon the SEM–DSM hybrid method

2015 ◽  
Vol 202 (2) ◽  
pp. 811-827 ◽  
Author(s):  
Vadim Monteiller ◽  
Sébastien Chevrot ◽  
Dimitri Komatitsch ◽  
Yi Wang
Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2916 ◽  
Author(s):  
Jingwei Zhang ◽  
Shengbo Ye ◽  
Li Yi ◽  
Yuquan Lin ◽  
Hai Liu ◽  
...  

Ground penetrating radar (GPR), as a nondestructive testing tool, is suitable for estimating the thickness and permittivity of layers within the pavement. However, it would become problematic when the layer is thin with respect to the probing pulse width, in which case overlapping between the reflected pulses occurs. In order to deal with this problem, a hybrid method based on multilayer perceptrons (MLPs) and a local optimization algorithm is proposed. This method can be divided into two stages. In the first stage, the MLPs roughly estimate the thickness and the permittivity of the GPR signal. In the second stage, these roughly estimated values are used as the initial solution of the full-waveform inversion algorithm. The hybrid method and the conventional global optimization algorithm are respectively used to perform the full-waveform inversion of the simulated GPR data. Under the same inversion precision, the objective function needs to be calculated for 450 times and 30 times for the conventional method and the hybrid method, respectively. The hybrid method is also applied to a measured data, and the thickness estimation error is 1.2 mm. The results show the high efficiency and accuracy of such hybrid method to resolve the problem of estimating the thickness and permittivity of a “thin layer”.


Author(s):  
Tatiana Kalinicheva ◽  
Michael Warner ◽  
Jack Ashley ◽  
Fabio Mancini

Author(s):  
Kai Wang ◽  
Yi Wang ◽  
Xin Song ◽  
Ping Tong ◽  
Qinya Liu ◽  
...  

ABSTRACT Teleseismic full-waveform inversion has recently been applied to image subwavelength-scale lithospheric structures (typically a few tens of kilometers) by utilizing hybrid methods in which an efficient solver for the 1D background model is coupled with a full numerical solver for a small 3D target region. Among these hybrid methods, the coupling of the frequency–wavenumber technique with the spectral element method is one of the most computationally efficient ones. However, it is normally based on a single plane-wave incidence, and thus cannot synthesize secondary global phases generated at interfaces outside the target area. To remedy the situation, we propose to use a multiple plane-wave injection method to include secondary global phases in the hybrid modeling. We investigate the performance of the teleseismic full-waveform inversion based on single and multiple plane-wave incidence through an application in the western Pyrenees and compare it with previously published images and the inversion based on a global hybrid method. In addition, we also test the influence of Earth’s spherical curvature on the tomographic results. Our results demonstrate that the teleseismic full-waveform inversion based on a single plane-wave incidence can reveal complex lithospheric structures similar to those imaged using a global hybrid method and is reliable for practical tomography for small regions with an aperture of a few hundred kilometers. However, neglecting the Earth’s spherical curvature and secondary phases leads to errors on the recovered amplitudes of velocity anomalies (e.g., about 2.8% difference for density and VS, and 4.2% for VP on average). These errors can be reduced by adopting a spherical mesh and injecting multiple plane waves in the frequency–wavenumber-based hybrid method. The proposed plane-wave teleseismic full-waveform inversion is promising for mapping subwavelength-scale seismic structures using high-frequency teleseismic body waves (>1  Hz) including coda waves recorded at large N seismic arrays.


2015 ◽  
Vol 202 (3) ◽  
pp. 1877-1894 ◽  
Author(s):  
Espen Birger Raknes ◽  
Børge Arntsen ◽  
Wiktor Weibull

2013 ◽  
Vol 195 (3) ◽  
pp. 1657-1678 ◽  
Author(s):  
J. Morgan ◽  
M. Warner ◽  
R. Bell ◽  
J. Ashley ◽  
D. Barnes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document