Sensitivities of Geodetic Source Analyses to Elastic Crust Heterogeneity Constrained by Seismic Tomography for the 2017 Mw 6.5 Jiuzhaigou, China, Earthquake

Author(s):  
Sui Tung ◽  
Kurt Katzenstein ◽  
Timothy Masterlark ◽  
Jianshe Lei ◽  
Christelle Wauthier ◽  
...  

ABSTRACT The 2017 Mw 6.5 Jiuzhaigou earthquake (JE) struck a rugged area of the Jiuzhaigou Valley in eastern Tibet that has experienced frequent seismic activity over the last few decades. We use finite‐element models (FEMs) and Sentinel‐1 Interferometric Synthetic Aperture Radar observations to characterize the earthquake source. The FEM domain accommodates a heterogeneous (HET) distribution of realistic crustal materials inferred by regional seismic tomography data. The HET‐derived source configurations yield a significantly smaller misfit, at the 95% confidence level, than that estimated for a homogeneous (HOM) half‐space. The former generally requires a lower degree of smoothing constraint, highlighting that the HET solutions are systematically more compatible with the surface observations than the HOM solutions. The magnitudes of induced Coulomb failure stress change (ΔCFS) estimated by the HET solution drastically differ (by >0.1  MPa) from those calculated by the HOM solution. The postearthquake stability of near‐field faults is generally overestimated by the HOM estimations, whereas some localities of negative ΔCFSHOM are predicted with positive ΔCFSHET. These results highlight the sensitivities of both slip and stress estimations to the complexity of the adopted elastic modeling domain, leading to more accurate aftershock hazard assessments. The HET‐resolved seismic rupture reveals two major slip asperities of magnitude up to 0.83 m distributed along the fault strike, which is coherent with the aftershock distribution. Two aftershock clusters are consistently found near or below these two peak‐slip zones, which are imaged by the HET model but absent in the HOM solution. The JE hypocenter and aftershocks are bounded below by a negative velocity anomaly (ΔVP, ΔVS down to −4%) at ∼18  km depth. Such low‐velocity layers of reduced strength may be relevant to the vertical distribution of seismicity and earthquake slip, which provide insights into assessing the seismic hazards and aftershock‐prone areas of the eastern Tibetan margin.

Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 122
Author(s):  
Irina Medved ◽  
Elena Bataleva ◽  
Michael Buslov

This paper presents new results of detailed seismic tomography (ST) on the deep structure beneath the Middle Tien Shan to a depth of 60 km. For a better understanding of the detected heterogeneities, the obtained velocity models were compared with the results of magnetotelluric sounding (MTS) along the Kekemeren and Naryn profiles, running parallel to the 74 and 76 meridians, respectively. We found that in the study region the velocity characteristics and geoelectric properties correlate with each other. The high-velocity high-resistivity anomalies correspond to the parts of the Tarim and Kazakhstan-Junggar plates submerged under the Tien Shan. We revealed that the structure of the Middle Tien Shan crust is conditioned by the presence of the Central Tien Shan microcontinent. It manifests itself as two anomalies lying one below the other: the lower low-velocity low-resistivity anomaly, and the upper high-velocity high-resistivity anomaly. The fault zones, limiting the Central Tien Shan microcontinent, appear as low-velocity low-resistivity anomalies. The obtained features indicate the fluid saturation of the fault zones. According to the revealed features of the Central Tien Shan geological structure, it is assumed that the lower-crustal low-velocity layer can play a significant role in the delamination of the mantle part of the submerged plates.


2021 ◽  
Author(s):  
Chiara Civiero ◽  
Sergei Lebedev ◽  
Nicolas L. Celli

<p>Hot plumes rising from Earth’s deep mantle are thought to form broad plume heads beneath lithospheric plates. In continents, mantle plumes cause uplift, rifting and volcanism, often dispersed over surprisingly broad areas. Using seismic waveform tomography, we image <span>a star-shaped, low-velocity anomaly centered at Afar and composed of three narrow branches: beneath East Africa, beneath the Gulf of Aden, and beneath the Red Sea and West Arabia, extending north to Levant. We interpret this anomaly as the seismic expression of </span>interconnected corridors of hot, partially molten rock beneath the East Africa-Arabia region. The corridors underlie areas of uplift, rifting and volcanism and accommodate an integral, active plume head. Eruption ages and plate reconstructions indicate that it developed south-to-north, and tomography shows it being fed by three deep upwellings beneath Kenya, Afar and Levant. <span>These results demonstrate the complex feedbacks between the continental-lithosphere heterogeneity and plume-head evolution. </span>Star-shaped plume heads sprawling within thin-lithosphere valleys can account for the enigmatic dispersed volcanism in large igneous provinces and are likely to be a basic mechanism of plume-continent interaction.</p>


1976 ◽  
Vol 66 (2) ◽  
pp. 501-524
Author(s):  
Keiiti Aki ◽  
Anders Christoffersson ◽  
Eystein S. Husebye

abstract Using P-wave residuals for teleseismic events observed at the Montana Large Aperture Seismic Array (LASA), we have determined the three-dimensional seismic structure of the lithosphere under the array to a depth of 140 km. The root-mean-square velocity fluctuation was found to be at least 3.2 per cent which may be compared to estimate of ca. 2 per cent based on the Chernov random medium theory. The solutions are given by both the generalized inverse and stochastic inverse methods in order to demonstrate the relative merit of different inversion techniques. The most conspicuous feature of the lithosphere under LASA is a low-velocity anomaly in the central and northeast part of the array siting area with the N60°E trend and persisting from the upper crust to depths greater than 100 km. We interpret this low-velocity anomaly as a zone of weakness caused by faulting and shearing associated with the building of the Rocky Mountains.


Geophysics ◽  
1983 ◽  
Vol 48 (11) ◽  
pp. 1421-1427 ◽  
Author(s):  
E. R. Kanasewich ◽  
P. G. Kelamis ◽  
F. Abramovici

Exact synthetic seismograms are obtained for a simple layered elastic half‐space due to a buried point force and a point torque. Two models, similar to those encountered in seismic exploration of sedimentary basins, are examined in detail. The seismograms are complete to any specified time and make use of a Cagniard‐Pekeris method and a decomposition into generalized rays. The weathered layer is modeled as a thin low‐velocity layer over a half‐space. For a horizontal force in an arbitrary direction, the transverse component, in the near‐field, shows detectable first arrivals traveling with a compressional wave velocity. The radial and vertical components, at all distances, show a surface head wave (sP*) which is not generated when the source is compressive. A buried vertical force produces the same surface head wave prominently on the radial component. An example is given for a simple “Alberta” model as an aid to the interpretation of wide angle seismic reflections and head waves.


1996 ◽  
Vol 39 (6) ◽  
Author(s):  
C. Chiarabba ◽  
A. Amato

In this paper we provide P-wave velocity images of the crust underneath the Apennines (Italy), focusing on the lower crustal structure and the Moho topography. We inverted P-wave arrival times of earthquakes which occurred from 1986 to 1993 within the Apenninic area. To overcome inversion instabilities due to noisy data (we used bulletin data) we decided to resolve a minimum number of velocity parameters, inverting for only two layers in the crust and one in the uppermost mantle underneath the Moho. A partial inversion of only 55% of the overall dataset yields velocity images similar to those obtained with the whole data set, indicating that the depicted tomograms are stable and fairly insensitive to the number of data used. We find a low-velocity anomaly in the lower crust extending underneath the whole Apenninic belt. This feature is segmented by a relative high-velocity zone in correspondence with the Ortona-Roccamonfina line, that separates the northern from the southern Apenninic arcs. The Moho has a variable depth in the study area, and is deeper (more than 37 km) in the Adriatic side of the Northern Apennines with respect to the Tyrrhenian side, where it is found in the depth interval 22-34 km.


2021 ◽  
Author(s):  
Sami El Khrepy ◽  
Ivan Koulakov ◽  
Nassir Al-Arifi ◽  
Mamdouh S. Alajmi ◽  
Ayman N. Qadrouh

<p><strong>Lithosphere extension, which plays an essential role in plate tectonics, occurs both in continents (as rift systems) and oceans (spreading along mid-oceanic ridges). The northern Red Sea area is a unique natural geodynamic laboratory, where the ongoing transition from continental rifting to oceanic spreading can be observed. Here, we analyze travel time data from a merged catalogue provided by the Egyptian and Saudi Arabian seismic networks to build a three-dimensional model of seismic velocities in the crust and uppermost mantle beneath the northern Red Sea and surroundings. The derived structures clearly reveal a high-velocity anomaly coinciding with the Red Sea basin and a narrow low-velocity anomaly centered along the rift axis. We interpret these structures as a transition of lithospheric extension from continental rifting to oceanic spreading. The transitional lithosphere is manifested by a dominantly positive seismic anomaly indicating the presence of a 50–70-km-thick and 200–300-km-wide cold lithosphere. Along the forming oceanic ridge axis, an elongated low-velocity anomaly marks a narrow localized nascent spreading zone that disrupts the transitional lithosphere. Along the eastern margins of the Red Sea, the lithosphere is disturbed by the lower-velocity anomalies coinciding with areas of basaltic magmatism.</strong></p>


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Wenzhong Wang ◽  
Yinhan Xu ◽  
Daoyuan Sun ◽  
Sidao Ni ◽  
Renata Wentzcovitch ◽  
...  

AbstractSeismic heterogeneities detected in the lower mantle were proposed to be related to subducted oceanic crust. However, the velocity and density of subducted oceanic crust at lower-mantle conditions remain unknown. Here, we report ab initio results for the elastic properties of calcium ferrite‐type phases and determine the velocities and density of oceanic crust along different mantle geotherms. We find that the subducted oceanic crust shows a large negative shear velocity anomaly at the phase boundary between stishovite and CaCl2-type silica, which is highly consistent with the feature of mid-mantle scatterers. After this phase transition in silica, subducted oceanic crust will be visible as high-velocity heterogeneities as imaged by seismic tomography. This study suggests that the presence of subducted oceanic crust could provide good explanations for some lower-mantle seismic heterogeneities with different length scales except large low shear velocity provinces (LLSVPs).


Tectonics ◽  
2018 ◽  
Vol 37 (9) ◽  
pp. 2833-2847 ◽  
Author(s):  
Fengxue Zhang ◽  
Qingju Wu ◽  
Yonghua Li ◽  
Ruiqing Zhang ◽  
Lian Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document