Ambient-Noise Tomography of the Baiyun Gold Deposit in Liaoning, China

2020 ◽  
Vol 91 (5) ◽  
pp. 2791-2802 ◽  
Author(s):  
Xuantao Li ◽  
Jinli Huang ◽  
Zhikun Liu

Abstract Ambient-noise tomography (ANT) has become an effective method for determining the fine velocity structure of the shallow crust. However, studies on metal mines using this method are rarely reported. To investigate the tectonic background and prospecting of the deep mine in the Baiyun gold deposit (BYGD) of eastern Liaoning Province, China, we use ANT to determine a 3D S-wave velocity structure model of the BYGD. A total of 21 broadband seismic stations were installed in an area of 15×14  km, centered at the BYGD. Continuous observations for approximately three months were made. After single-station preprocessing, cross correlation of ambient noise, and phase-weighted stacking, the empirical Green’s function for the Rayleigh waves between stations was recovered. Next, group-velocity dispersion with 0.8–3 s periods was measured. A direct inversion method of surface-wave dispersion based on raytracing was then adopted to determine a 3D S-wave velocity structure of the BYGD from the ground surface to a depth of 1.8 km. The results show that the distribution of S-wave velocities in the study area well reflected the geological characteristics of the surface. The velocities were significantly low within the “ore field” and the regional ore-controlling Jianshanzi fault. Combining this with the fact that a large number of magmatic veins were visible inside both structures, it was deduced that both structures had experienced large-scale magmatic intrusion activities, thus confirming that BYGD was a magmatic hydrothermal deposit. The significantly low S-wave velocities beneath the gold deposit extended to a depth of 1.8 km. This might imply the occurrence of blind ore bodies at that depth. The fine velocity structure of the BYGD reconstructed by this study provided a direction for subsequent prospecting of deep regions and demonstrated that ANT has good potential in metal mine exploration.




2019 ◽  
Author(s):  
Chisato Konishi ◽  
Koichi Hayashi ◽  
Ying Liu ◽  
Haruhiko Suzuki ◽  
Tadashi Sato


2021 ◽  
Author(s):  
P. Wardaya

Petroleum exploration in sub-volcanic area always poses an inevitable challenge. Active seismic exploration method fails to obtain reliable imaging of the sediment beneath volcanic formation due to massive attenuation. This issue has been a long-standing problem in onshore seismic activity in Indonesia, especially in areas where volcanic formations present above the sedimentary formation of interest. To address this issue, we propose an alternative method utilizing a passive seismic approach to obtain reliable subsurface information. This paper discusses our experience in employing ambient noise tomography to evaluate the sedimentary structure beneath the volcanic area in Southern Malang, East Java. The passive seismic network deploying 70 seismometers were installed in a relatively regular grid. With the maximum offset between two furthest stations was 44.5km, we can capture the maximum wavelength of 15 km which is associated with the minimum frequency as low as 0.08 Hz to be used in the inversion. In principle, the seismometers record the coherent seismic noise coming from the atmospheric activity, sea wave, or industrial activity in the surface. Cross correlation between signal received in each station and their continuous stacking yields useful signals to reveal the dispersion curve which can produce the subsurface velocity profile through an inversion technique. From the inversion result we obtain the subsurface s-wave velocity structure down to a depth of 6 km. Higher s-wave velocity structure on the shallow depth in the northern area of the survey confirms the presence of the thick volcanic sediment situated near volcanic mountain. Towards the southern area we observe a slower s-wave velocity profile that indicates the thinning of volcanic formation. Although the method has successfully delivered a reliable s-wave structure over an entire survey area, its resolution is limited due to large spacing between stations. We suggest deploying denser stations to improve the velocity resolution.



1998 ◽  
Vol 41 (1) ◽  
Author(s):  
G. A. Tselentis ◽  
G. Delis

The importance of detailed knowledge of the shear-wave velocity structure of the upper geological layers was recently stressed in strong motion studies. In this work we describe an algorithm which we have developed to infer the 1D shear wave velocity structure from the inversion of multichannel surface wave dispersion data (ground-roll). Phase velocities are derived from wavenumber-frequency stacks while the inversion process is speeded up by the use of Householder transformations. Using synthetic and experimental data, we examined the applicability of the technique in deducing S-wave profiles. The comparison of the obtained results with those derived from cross-hole measurements and synthesized wave fields proved the reliability of the technique for the rapid assessment of shear wave profiles during microzonation investigations.



2019 ◽  
Vol 24 (4) ◽  
pp. 641-652
Author(s):  
Feng Liang ◽  
Zhihui Wang ◽  
Hailong Li ◽  
Kai Liu ◽  
Tao Wang

Urban geophysics ups the ante in the world of applied geophysics, which requires innovative thinking and seemingly off-the-wall approaches, if for no other reason than the settings. Ambient-noise-tomography (ANT) can play a pivotal role in yielding subsurfa2ce information in urban areas, which is capable of dealing with challenges related to these scenarios ( e.g., human activities and low signal-to-noise ratio). In this study, the ANT was conducted to investigate the near-surface shear-velocity structure in the surrounding area of the Baotu Spring Park in downtown Jinan, Shandong Province, China. Quiet clear Rayleigh waves have been obtained by the cross-correlation, which indicates that strong human activities, such as moving vehicles and municipal engineering constructions, can produce approximately isotropic distribution of noise sources for high-frequency signals. The direct surface-wave tomographic method with period-dependent ray-tracing was used to invert all surface-wave dispersion data in the period band 0.2-1.5 s simultaneously for 3D variations of shear-velocity (Vs) structure. Our results show a good correspondence to the geological features with thinner Quaternary sediments, the geological structural characteristic of the limestone surrounded by the igneous which has the highest velocity than that of the limestone in the study area, and several concealed faults of which specific location has been detected at depth. The results demonstrate that it is possible to successfully use ANT with high-frequency signal in an urban environment provided a detailed planning and execution is implemented.



2021 ◽  
Author(s):  
◽  
Holly Joanne Godfrey

<p>We use continuous seismic data from permanent and temporary, broadband and short-period stations that were operating during 2001 and 2008 to investigate the subsurface velocity structure of the Tongariro Volcanic Centre (TgVC) of New Zealand, particularly the highly active but poorly understood Ruapehu and Tongariro Volcanoes.  Stacks of cross-correlation of two concurrent ambient noise seismograms can be used to estimate the interstation Green's Function, i.e., the impulse response of the earth between the two receivers. The Green's Functions are used to retrieve the dispersion relation (frequency-dependent velocity) of surface waves at different periods, which reflects the shear-wave velocity structure in the Fresnel volume of the propagating surface waves. Several studies have used dispersion measurements from ambient noise cross-correlations to investigate the shallow subsurface shear-wave velocity structure of active volcanoes around the world. Most use vertical components to retrieve the Rayleigh waves, but it is becoming increasingly common to use the horizontal seismogram components in addition to the vertical, giving further constraints to Rayleigh-wave measurements and introducing data relating to Love waves.  We compute 1,048,968 daily cross-correlations for 955 viable station pairs across the two periods, including all nine-components of the cross-correlation tensor where possible. These daily functions are then stacked into 7458 full-stacks, of which we make group velocity dispersion measurements for 2641 RR-, RZ-, TT-, ZR- and ZZ-component stacks. Cross-correlation quality varies across the networks, with some station pairs possibly contaminated with timing errors.  We observe both the fundamental and rst higher-order modes within our database of dispersion measurements. However, correctly identifying the mode of some measurements is challenging as the range of group velocities measured reflects both presence of multiple modes and heterogeneity of the local velocity structure. We assign modes to over 1900 measurements, of which we consider 1373 to be high quality.  We invert fundamental mode Rayleigh- and Love-wave dispersion curves independently and jointly for one dimensional shear-wave velocity profiles at Ruapehu and Tongariro Volcanoes, using dispersion measurements from two individual station pairs and average dispersion curves from measurements within specifi c areas on/around the volcanoes. Our Ruapehu profiles show little velocity variation with depth, suggesting that volcanic edifice is made of material that is compacting and being hydrothermally altered with depth. At Tongariro, we observe larger increases in velocity with depth, which we interpret as different layers within Tongariro's volcanic system. Slow shear-wave velocities, on the order of 1-2 km/s, are consistent with both P-wave velocities from existing velocity pro files of areas within the TgVC, and the observations of worldwide studies of shallow volcanic systems that used ambient noise cross-correlation.  A persistent observation across the majority of our dispersion measurements is that group velocities of the fundamental mode Love-wave group velocity measurements are slower than those of fundamental mode Rayleigh-waves, particularly in the frequency range of 0.25-1 Hz. Similarly, first higher-order mode Love-wave group velocities are slower than first higher-mode Rayleigh-wave velocities. This is inconsistent with the differences between synthetic dispersion curves that were calculated using isotropic, layered velocity models appropriate for Ruapehu and Tongariro. We think the Love-Rayleigh discrepancy is due to structures such as dykes or cracks in the vertical plane having greater influence than horizontal layering on surface-wave propagation. However, several measurements where Love-wave group velocities are faster than Rayleigh-wave group velocities suggests that in some places horizontal layering is the stronger influence.  We also observe that the differences between the Love- and Rayleigh-wave dispersion curves vary with the azimuth of the interstation path across Ruapehu and Tongariro Volcanoes. Some significant differences between Rayleigh-wave velocities of measurements with different interstation orientations are also observed, as are differences between Love-wave velocities. This suggests a component of azimuthal anisotropy within the volcanic structures, which coupled with the radial anistropy makes the shear-wave velocity structures of Ruapehu and Tongariro Volcanoes anisotropic with orthorhombic symmetry. We suggest that further work to determine three-dimensional structure should include provisions for anisotropy with orthorhombic or lower symmetry.</p>



Solid Earth ◽  
2017 ◽  
Vol 8 (2) ◽  
pp. 531-544 ◽  
Author(s):  
Nikita Afonin ◽  
Elena Kozlovskaya ◽  
Ilmo Kukkonen ◽  

Abstract. Understanding the inner structure of seismogenic faults and their ability to reactivate is particularly important in investigating the continental intraplate seismicity regime. In our study we address this problem using analysis of local seismic events and ambient seismic noise recorded by the temporary DAFNE array in the northern Fennoscandian Shield. The main purpose of the DAFNE/FINLAND passive seismic array experiment was to characterize the present-day seismicity of the Suasselkä postglacial fault (SPGF), which was proposed as one potential target for the DAFNE (Drilling Active Faults in Northern Europe) project. The DAFNE/FINLAND array comprised an area of about 20 to 100 km and consisted of eight short-period and four broadband three-component autonomous seismic stations installed in the close vicinity of the fault area. The array recorded continuous seismic data during September 2011–May 2013. Recordings of the array have being analysed in order to identify and locate natural earthquakes from the fault area and to discriminate them from the blasts in the Kittilä gold mine. As a result, we found a number of natural seismic events originating from the fault area, which proves that the fault is still seismically active. In order to study the inner structure of the SPGF we use cross-correlation of ambient seismic noise recorded by the array. Analysis of azimuthal distribution of noise sources demonstrated that during the time interval under consideration the distribution of noise sources is close to the uniform one. The continuous data were processed in several steps including single-station data analysis, instrument response removal and time-domain stacking. The data were used to estimate empirical Green's functions between pairs of stations in the frequency band of 0.1–1 Hz and to calculate corresponding surface wave dispersion curves. The S-wave velocity models were obtained as a result of dispersion curve inversion. The results suggest that the area of the SPGF corresponds to a narrow region of low S-wave velocities surrounded by rocks with high S-wave velocities. We interpret this low-velocity region as a non-healed mechanically weak fault damage zone (FDZ) formed due to the last major earthquake that occurred after the last glaciation.



2018 ◽  
Vol 123 (9) ◽  
pp. 8016-8031 ◽  
Author(s):  
Yayun Zhang ◽  
Huajian Yao ◽  
Hsin-Ying Yang ◽  
Hui-Teng Cai ◽  
Hongjian Fang ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document