Some methods for determining acceleration and tilt by use of pendulums and accelerometers

1973 ◽  
Vol 63 (1) ◽  
pp. 1-7
Author(s):  
Hugh Bradner ◽  
Michael Reichle

abstract We consider the use of a system of horizontal and vertical pendulums to determine linear and rotational components of ground motion. Accelerometers can be viewed as a special case of pendulums. Fourth-order equations are always required for determining horizontal displacement unless the natural period of at least one sensor lies far below the passband of interest. Applications to guidance and to seismology are mentioned briefly.

2021 ◽  
pp. 875529302110275
Author(s):  
Carlos A Arteta ◽  
Cesar A Pajaro ◽  
Vicente Mercado ◽  
Julián Montejo ◽  
Mónica Arcila ◽  
...  

Subduction ground motions in northern South America are about a factor of 2 smaller than the ground motions for similar events in other regions. Nevertheless, historical and recent large-interface and intermediate-depth slab earthquakes of moment magnitudes Mw = 7.8 (Ecuador, 2016) and 7.2 (Colombia, 2012) evidenced the vast potential damage that vulnerable populations close to earthquake epicenters could experience. This article proposes a new empirical ground-motion prediction model for subduction events in northern South America, a regionalization of the global AG2020 ground-motion prediction equations. An updated ground-motion database curated by the Colombian Geological Survey is employed. It comprises recordings from earthquakes associated with the subduction of the Nazca plate gathered by the National Strong Motion Network in Colombia and by the Institute of Geophysics at Escuela Politécnica Nacional in Ecuador. The regional terms of our model are estimated with 539 records from 60 subduction events in Colombia and Ecuador with epicenters in the range of −0.6° to 7.6°N and 75.5° to 79.6°W, with Mw≥4.5, hypocentral depth range of 4 ≤  Zhypo ≤ 210 km, for distances up to 350 km. The model includes forearc and backarc terms to account for larger attenuation at backarc sites for slab events and site categorization based on natural period. The proposed model corrects the median AG2020 global model to better account for the larger attenuation of local ground motions and includes a partially non-ergodic variance model.


2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Piotr Adam Bońkowski ◽  
Juliusz Kuś ◽  
Zbigniew Zembaty

AbstractRecent research in engineering seismology demonstrated that in addition to three translational seismic excitations along x, y and z axes, one should also consider rotational components about these axes when calculating design seismic loads for structures. The objective of this paper is to present the results of a seismic response numerical analysis of a mine tower (also called in the literature a headframe or a pit frame). These structures are used in deep mining on the ground surface to hoist output (e.g. copper ore or coal). The mine towers belong to the tall, slender structures, for which rocking excitations may be important. In the numerical example, a typical steel headframe 64 m high is analysed under two records of simultaneous rocking and horizontal seismic action of an induced mine shock and a natural earthquake. As a result, a complicated interaction of rocking seismic effects with horizontal excitations is observed. The contribution of the rocking component may sometimes reduce the overall seismic response, but in most cases, it substantially increases the seismic response of the analysed headframe. It is concluded that in the analysed case of the 64 m mining tower, the seismic response, including the rocking ground motion effects, may increase up to 31% (for natural earthquake ground motion) or even up to 135% (for mining-induced, rockburst seismic effects). This means that not only in the case of the design of very tall buildings or industrial chimneys but also for specific yet very common structures like mine towers, including the rotational seismic effects may play an important role.


1998 ◽  
Vol 21 (3) ◽  
pp. 479-488
Author(s):  
A. S. A. Al-Hammadi

In this paper we identify a relation between the coefficients that represents a critical case for general fourth-order equations. We obtained the forms of solutions under this critical case.


2018 ◽  
Vol 149 (03) ◽  
pp. 761-779 ◽  
Author(s):  
M. Á. Burgos-Pérez ◽  
J. García-Melián ◽  
A. Quaas

AbstractIn this paper, we analyse the semilinear fourth-order problem ( − Δ)2 u = g(u) in exterior domains of ℝN. Assuming the function g is nondecreasing and continuous in [0, + ∞) and positive in (0, + ∞), we show that positive classical supersolutions u of the problem which additionally verify − Δu > 0 exist if and only if N ≥ 5 and $$\int_0^\delta \displaystyle{{g(s)}\over{s^{(({2(N-2)})/({N-4}))}}} {\rm d}s \lt + \infty$$ for some δ > 0. When only radially symmetric solutions are taken into account, we also show that the monotonicity of g is not needed in this result. Finally, we consider the same problem posed in ℝN and show that if g is additionally convex and lies above a power greater than one at infinity, then all positive supersolutions u automatically verify − Δu > 0 in ℝN, and they do not exist when the previous condition fails.


Sign in / Sign up

Export Citation Format

Share Document