Surface-wave constraints on the August 1, 1975, Oroville earthquake

1977 ◽  
Vol 67 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Robert S. Hart ◽  
Rhett Butler ◽  
Hiroo Kanamori

abstract Observations of Love and Rayleigh waves on WWSSN and Canadian Network seismograms have been used to place constraints upon the source parameters of the August 1, 1975, Oroville earthquake. The 20-sec surface-wave magnitude is 5.6. The surface-wave radiation pattern is consistent with the fault geometry determined by the body-wave study of Langston and Butler (1976). The seismic moment of this event was determined to be 1.9 × 1025 dyne-cm by both time-domain and long-period (T ≥ 50 sec) spectral amplitude determinations. This moment value is significantly greater than that determined by short-period studies. This difference, together with the low seismic efficiency of this earthquake, indicates that the character of the source is intrinsically different at long periods from those aspects which dominate the shorter-period spectrum.

1975 ◽  
Vol 65 (3) ◽  
pp. 693-709 ◽  
Author(s):  
Otto W. Nuttli ◽  
So Gu Kim

abstract Body-wave magnitudes, mb, and surface-wave magnitudes, MS, were determined for approximately 100 Eurasian events which occurred during the interval August through December 1971. Body-wave magnitudes were determined from 1-sec P waves recorded by WWSSN short-period, vertical-component seismographs at epicentral distances greater than 25°. Surface-wave magnitudes were determined from 20-sec Rayleigh waves recorded by long-period, vertical-component WWSSN and VLPE seismographs. The earthquakes had mb values ranging from 3.6 to 5.7. Of 96 presumed earthquakes studied, 6 lie in or near the explosion portion of an mb:MS plot. The explosion mb:MS curve was obtained from seven Eurasian events which had mb values ranging from 5.0 to 6.2 and MS values from 3.2 to 5.1. All six anomalous earthquakes were located in the interior of Asia, in Tibet, and in Szechwan and Sinkiang provinces of China. In general, oceanmargin earthquakes were found to have more earthquake-like mb:MS values than those occurring in the continental interior. Neither focal depth nor focal mechanism can explain the anomalous events.


1971 ◽  
Vol 8 (2) ◽  
pp. 243-247
Author(s):  
Goetz G. R. Buchbinder

Two large unannounced events occurred at sea in aseismic areas in the Atlantic. Comparison of these with the announced event Chase III shows them to be explosions.Large explosions at sea may be recognized by the relatively small amplitude of long period surface waves with periods up to 10 s. Energy of longer periods is absent for events mb ≤ 5.5. The surface wave magnitudes for the events are at least 1.5 smaller at 10 s than those of underground explosions of equal mb, at 20 s they are at least 0.9 smaller. At longer periods the difference between body wave and surface wave magnitude is larger than 0.9 but larger explosions are needed to determine the separation. Underwater explosions on or near the continental shelf are very efficient in the generation of higher mode short period waves.


1978 ◽  
Vol 68 (5) ◽  
pp. 1281-1292
Author(s):  
John E. Ebel ◽  
L. J. Burdick ◽  
Gordon S. Stewart

abstract The El Golfo earthquake of August 7, 1966 (mb = 6.3, MS = 6.3) occurred near the mouth of the Colorado River at the northern end of the Gulf of California. Synthetic seismograms for this event were computed for both the body waves and the surface waves to determine the source parameters of the earthquake. The body-wave model indicated the source was a right lateral, strike-slip source with a depth of 10 km and a far-field time function 4 sec in duration. The body-wave moment was computed to be 5.0 × 1025 dyne-cm. The surface-wave radiation pattern was found to be consistent with that of the body waves with a surface-wave moment of 6.5 × 1025 dyne-cm. The agreement of the two different moments indicates that the earthquake had a simple source about 4 sec long. A comparison of this earthquake source with the Borrego Mountain and Truckee events demonstrates that all three of these earthquakes behaved as high stress-drop events. El Golfo was shown to be different from the low stress-drop, plate-boundary events which were located on the Gibbs fracture zone in 1967 and 1974.


1971 ◽  
Vol 61 (5) ◽  
pp. 1369-1379 ◽  
Author(s):  
Nezihi Canitez ◽  
M. Nafi Toksöz

abstract The determination of focal depth and other source parameters by the use of first-motion data and surface-wave spectra is investigated. It is shown that the spectral ratio of Love to Rayleigh waves (L/R) is sensitive to all source parameters. The azimuthal variation of the L/R spectral ratios can be used to check the fault-plane solution as well as for focal depth determinations. Medium response, attenuation, and source finiteness seriously affect the absolute spectra and introduce uncertainty into the focal depth determinations. These effects are nearly canceled out when L/R amplitude ratios are used. Thus, the preferred procedure for source mechanism studies of shallow earthquakes is to use jointly the body-wave data, absolute spectra of surface waves, and the Love/Rayleigh spectral ratios. With this procedure, focal depths can be determined to an accuracy of a few kilometers.


1990 ◽  
Vol 80 (5) ◽  
pp. 1205-1231
Author(s):  
Jiajun Zhang ◽  
Thorne Lay

Abstract Determination of shallow earthquake source mechanisms by inversion of long-period (150 to 300 sec) Rayleigh waves requires epicentral locations with greater accuracy than that provided by routine source locations of the National Earthquake Information Center (NEIC) and International Seismological Centre (ISC). The effects of epicentral mislocation on such inversions are examined using synthetic calculations as well as actual data for three large Mexican earthquakes. For Rayleigh waves of 150-sec period, an epicentral mislocation of 30 km introduces observed source spectra phase errors of 0.6 radian for stations at opposing azimuths along the source mislocation vector. This is larger than the 0.5-radian azimuthal variation of the phase spectra at the same period for a thrust fault with 15° dip and 24-km depth. The typical landward mislocation of routinely determined epicenters of shallow subduction zone earthquakes causes source moment tensor inversions of long-period Rayleigh waves to predict larger fault dip than indicated by teleseismic P-wave first-motion data. For dip-slip earthquakes, inversions of long-period Rayleigh waves that use an erroneous source location in the down-dip or along-strike directions of a nodal plane, overestimate the strike, dip, and slip of that nodal plane. Inversions of strike-slip earthquakes that utilize an erroneous location along the strike of a nodal plane overestimate the slip of that nodal plane, causing the second nodal plane to dip incorrectly in the direction opposite to the mislocation vector. The effects of epicentral mislocation for earthquakes with 45° dip-slip fault mechanisms are more severe than for events with other fault mechanisms. Existing earth model propagation corrections do not appear to be sufficiently accurate to routinely determine the optimal surface-wave source location without constraints from body-wave information, unless extensive direct path (R1) data are available or empirical path calibrations are performed. However, independent surface-wave and body-wave solutions can be remarkably consistent when the effects of epicentral mislocation are accounted for. This will allow simultaneous unconstrained body-wave and surface-wave inversions to be performed despite the well known difficulties of extracting the complete moment tensor of shallow sources from fundamental modes.


1976 ◽  
Vol 66 (5) ◽  
pp. 1485-1499 ◽  
Author(s):  
L. J. Burdick ◽  
George R. Mellman

abstract The generalized linear inverse technique has been adapted to the problem of determining an earthquake source model from body-wave data. The technique has been successfully applied to the Borrego Mountain earthquake of April 9, 1968. Synthetic seismograms computed from the resulting model match in close detail the first 25 sec of long-period seismograms from a wide range of azimuths. The main shock source-time function has been determined by a new simultaneous short period-long period deconvolution technique as well as by the inversion technique. The duration and shape of this time function indicate that most of the body-wave energy was radiated from a surface with effective radius of only 8 km. This is much smaller than the total surface rupture length or the length of the aftershock zone. Along with the moment determination of Mo = 11.2 ×1025 dyne-cm, this radius implies a high stress drop of about 96 bars. Evidence in the amplitude data indicates that the polarization angle of shear waves is very sensitive to lateral structure.


1972 ◽  
Vol 62 (3) ◽  
pp. 789-792
Author(s):  
B. F. Howell

Abstract The standard deviations of the body-wave magnitude, surface-wave magnitude and frequency-band magnitude of four shallow (H < 60 km) earthquakes are compared. For three out of four of these earthquakes, surface-wave magnitude exhibited lower standard deviations than either body-wave or frequency-band magnitude. In three out of the four cases, lower standard deviations were obtained by calculating surface-wave magnitude from the largest surface-wave amplitude than from time-correlated surface-wave phases.


1989 ◽  
Vol 79 (1) ◽  
pp. 51-66
Author(s):  
Jiajun Zhang ◽  
Thorne Lay

Abstract The 22 June 1977 (Mw = 8.2) Tonga earthquake has the longest rupture duration ever reported for a normal fault event. The 150-km depth range spanned by aftershocks of the earthquake is also unusually large. There has been substantial controversy over both the depth and duration of faulting for this great event, obscuring its tectonic significance. We study the source process of the Tonga event using long-period Rayleigh waves recorded by the Global Digital Seismograph Network (GDSN) and International Deployment of Accelerometers (IDA) networks. For a standard assumption of a Haskell source, a total duration of 84 ± 4 sec is obtained using a least-squares inversion method. We introduce the use of the spectral amplitude as a weighting factor in measuring the misfit between the data and a given source finiteness model, which reduces the scatter and improves the resolution of source duration determined from data ranging in period from 150 to 300 sec. Using a more realistic shape for the source-time function in the inversion (drawing upon results from body-wave analysis) reveals a much longer (165-sec process time) component of the source process of the Tonga earthquake. The fundamental mode Rayleigh waves do not resolve any horizontal source directivity. However, the centroid depth of the earthquake is well resolved as 96 km with 90 per cent confidence range (93, 104 km). The estimated error in the depth determination due to the uncertainties in the source finiteness and earth models is only a few kilometers. The results indicate that the rupture of the earthquake excited long-period seismic waves at depths somewhat greater than the 70 to 80 km depth range where the primary body-wave radiation occurred, favoring rupture on the steeply dipping plane of the focal mechanism. The fundamental mode Rayleigh waves with periods longer than 150 sec cannot resolve vertical extent of the faulting; however, additional information from body-wave and free oscillation analyses indicates a vertical fault extent of about 50 km with a frequency-dependent variation in seismic radiation with depth.


1967 ◽  
Vol 57 (6) ◽  
pp. 1355-1365 ◽  
Author(s):  
James N. Brune ◽  
Chi-Yu King

Abstract The excitation of mantle Rayleigh waves of 100 seconds period as a function of magnitude is studied using data from 91 earthquakes in the magnitude range 5.0 to 8.9. The data were recorded on a wide variety of instruments including Milne-Shaw horizontal pendulums and modern long-period high-gain inertial seismographs. The larger earthquakes studied range in time from 1923 to 1964. Mantle Rayleigh wave amplitudes are corrected to a distance of 90° and plotted as a function of surface wave magnitude. The data are compared with theoretical curves based on a moving source model and two statistical models discussed by Aki. It is concluded that for large earthquakes the source may be approximated by a point couple which propagates a distance given approximately by the length of the aftershock zone.


1998 ◽  
Vol 88 (1) ◽  
pp. 43-61
Author(s):  
Mehdi Rezapour ◽  
Robert G. Pearce

Abstract We investigate bias in surface-wave magnitude using the complete ISC and NEIC datasets from 1978 to 1993. We conclude that although there are some small differences between the ISC and NEIC magnitudes, there is no major difference between these agencies for this presentation of the global dataset. The frequency-distance plot for reported surface-wave amplitude observations exhibits detailed structure of the body-wave amplitude-distance curve at all distances; the influence of the surface-wave amplitude decay with distance is much less apparent. This censoring via the body waves represents a large deficit in the number of potentially usable surface-wave amplitude observations, particularly in the P-wave shadow zone between Δ = 100° and 120°. We have obtained two new modified Ms formulas based upon analysis of all ISC data between 1978 and 1993. In the first, the conventional logarithmic dependence of the distance correction is retained, and we obtain M s e = log ( A / T ) max + 1.155 log ( Δ ) + 4.269 . In the second, we make allowance for the theoretically known contribution of dispersion and geometrical spreading, to obtain M s t = log ( A / T ) max + 1 3 log ( Δ ) + 1 2 log ( sin Δ ) + 0.0046 Δ + 5.370. Comparison of these formulas with other work confirms the inadequacy of the distance-dependence term in the Gutenberg and Prague formulas, and we show that our first formula, as well as that of Herak and Herak, gives less bias at all epicentral distances to within the scatter of the observed dataset. Our second formula provides an improved overall distance correction, especially beyond Δ = 145°. We show evidence that Airy-phase distance decay predominates at shorter distances (Δ≦30°), but for greater distances, we are unable to resolve whether this or non-Airy-phase decay predominates. Assuming 20-sec surface waves with U = 3.6 km/sec, we obtain a globally averaged apparent Q−1 of 0.00192 ± 0.00026 (Q ≈ 500). We argue that our second formula not only improves the distance correction for surface-wave magnitudes but also promotes the analysis of unexplained amplitude anomalies by formally allowing for those contributions that are theoretically predictable. We conclude that there remains systematic bias in station magnitudes and that this includes the effects of source depth, different path contributions, and differences in seismometer response. For intermediate magnitudes, Mts shows less scatter against log M0 than does Ms calculated using the Prague formula.


Sign in / Sign up

Export Citation Format

Share Document