A Computer Method for Determination of Valid Focal Mechanisms Using P Wave First Motions

1977 ◽  
Vol 48 (4) ◽  
pp. 21-33
Author(s):  
S. Guinn ◽  
L. T. Long
1996 ◽  
Vol 86 (2) ◽  
pp. 470-476 ◽  
Author(s):  
Cheng-Horng Lin ◽  
S. W. Roecker

Abstract Seismograms of earthquakes and explosions recorded at local, regional, and teleseismic distances by a small-aperture, dense seismic array located on Pinyon Flat, in southern California, reveal large (±15°) backazimuth anomalies. We investigate the causes and implications of these anomalies by first comparing the effectiveness of estimating backazimuth with an array using three different techniques: the broadband frequency-wavenumber (BBFK) technique, the polarization technique, and the beamforming technique. While each technique provided nearly the same direction as a most likely estimate, the beamforming estimate was associated with the smallest uncertainties. Backazimuth anomalies were then calculated for the entire data set by comparing the results from beamforming with backazimuths derived from earthquake locations reported by the Anza and Caltech seismic networks and the Preliminary Determination of Epicenters (PDE) Bulletin. These backazimuth anomalies have a simple sinelike dependence on azimuth, with the largest anomalies observed from the southeast and northwest directions. Such a trend may be explained as the effect of one or more interfaces dipping to the northeast beneath the array. A best-fit model of a single interface has a dip and strike of 20° and 315°, respectively, and a velocity contrast of 0.82 km/sec. Application of corrections computed from this simple model to ray directions significantly improves locations at all distances and directions, suggesting that this is an upper crustal feature. We confirm that knowledge of local structure can be very important for earthquake location by an array but also show that corrections computed from simple models may not only be adequate but superior to those determined by raytracing through smoothed laterally varying models.


1990 ◽  
Vol 80 (5) ◽  
pp. 1205-1231
Author(s):  
Jiajun Zhang ◽  
Thorne Lay

Abstract Determination of shallow earthquake source mechanisms by inversion of long-period (150 to 300 sec) Rayleigh waves requires epicentral locations with greater accuracy than that provided by routine source locations of the National Earthquake Information Center (NEIC) and International Seismological Centre (ISC). The effects of epicentral mislocation on such inversions are examined using synthetic calculations as well as actual data for three large Mexican earthquakes. For Rayleigh waves of 150-sec period, an epicentral mislocation of 30 km introduces observed source spectra phase errors of 0.6 radian for stations at opposing azimuths along the source mislocation vector. This is larger than the 0.5-radian azimuthal variation of the phase spectra at the same period for a thrust fault with 15° dip and 24-km depth. The typical landward mislocation of routinely determined epicenters of shallow subduction zone earthquakes causes source moment tensor inversions of long-period Rayleigh waves to predict larger fault dip than indicated by teleseismic P-wave first-motion data. For dip-slip earthquakes, inversions of long-period Rayleigh waves that use an erroneous source location in the down-dip or along-strike directions of a nodal plane, overestimate the strike, dip, and slip of that nodal plane. Inversions of strike-slip earthquakes that utilize an erroneous location along the strike of a nodal plane overestimate the slip of that nodal plane, causing the second nodal plane to dip incorrectly in the direction opposite to the mislocation vector. The effects of epicentral mislocation for earthquakes with 45° dip-slip fault mechanisms are more severe than for events with other fault mechanisms. Existing earth model propagation corrections do not appear to be sufficiently accurate to routinely determine the optimal surface-wave source location without constraints from body-wave information, unless extensive direct path (R1) data are available or empirical path calibrations are performed. However, independent surface-wave and body-wave solutions can be remarkably consistent when the effects of epicentral mislocation are accounted for. This will allow simultaneous unconstrained body-wave and surface-wave inversions to be performed despite the well known difficulties of extracting the complete moment tensor of shallow sources from fundamental modes.


1964 ◽  
Vol 54 (6A) ◽  
pp. 2037-2047
Author(s):  
Agustin Udias

abstract In this paper a numerical approach to the determination of focal mechanisms based on the observation of the polarization of the S wave at N stations is presented. Least-square methods are developed for the determination of the orientation of the single and double couple sources. The methods allow a statistical evaluation of the data and of the accuracy of the solutions.


2016 ◽  
Vol 43 (2) ◽  
pp. 611-619 ◽  
Author(s):  
Kazutoshi Imanishi ◽  
Takahiko Uchide ◽  
Naoto Takeda

1973 ◽  
Vol 63 (2) ◽  
pp. 529-547
Author(s):  
Tien-Chang Lee ◽  
Ta-Liang Teng

abstract The displacement field in a multi-layered medium due to incident plane P or SV waves is formulated in terms of Haskell's layer matrices. Based on the reciprocity theorem, the far-field polar radiation patterns of single force, double force, single couple, double couple, and dilatation in a multi-layered medium can be obtained from the displacement field and its first derivatives with respect to the spatial coordinates. Numerical results for models of one layer overlying a half-space indicate that (1) the radiation patterns are sensitive to the variation of focal depth, (2) the layering has a more pronounced effect on SV-wave radiation patterns than on P-wave radiation patterns, (3) the radiation patterns become simpler as the wavelength increases, (4) polarity may reverse abruptly somewhere beyond the critical angle in SV-wave radiation patterns, (5) radiation may be discontinuous across interfaces for some assumed focal mechanisms applied slightly above and below the interfaces, and (6) no clearcut distinction among the various radiation patterns can be used to single out one type of the assumed focal mechanisms from the rest.


1973 ◽  
Vol 63 (2) ◽  
pp. 599-614 ◽  
Author(s):  
M. E. O'Neill ◽  
J. H. Healy

abstract A simple method of estimating source dimensions and stress drops of small earthquakes is presented. The basic measurement is the time from the first break to the first zero crossing on short-period seismograms. Graphs relating these measurements to rise time as a function of Q and instrument response permit an estimate of earthquake source parameters without the calculation of spectra. Tests on data from Rangely, Colorado, and Hollister, California, indicate that the method gives reasonable results.


1999 ◽  
Vol 89 (4) ◽  
pp. 1077-1082 ◽  
Author(s):  
So Gu Kim ◽  
Nadeja Kraeva

Abstract The purpose of this investigation is to determine source parameters such as focal mechanism, seismic moment, moment magnitude, and source depth from recent small earthquakes in the Korcan Peninsula using broadband records of three-component single station. It is very important and worthwhile to use a three-component single station in Korea because for most Korean earthquakes it is not possible to read enough first motions of P-wave arrivals because of the poor coverage of the seismic network and the small size (ML 5.0 or less) of the events. Furthermore the recent installation of the very broadband seismic stations in Korea and use of a 3D tomography technique can enhance moment tensor inversion to determine the source parameters of small earthquakes (ML 5.0 or less) that occur at near-regional distances (Δ ≤ 500 km). The focal solution for the Youngwol earthquake of 13 December 1996 is found to be a right-lateral strike slip event with a NE strike, and the Kyongju earthquake of 25 June 1997 is found to be an oblique reverse fault with a slight component of left-lateral slip in the SE direction.


Sign in / Sign up

Export Citation Format

Share Document