scholarly journals Pengaruh Aplikasi Moving Bed Biofilm Reactor (MBBR) Untuk Pengolahan Limbah Air Lindi (Leachate) Secara Aerobik Terhadap Kualitas Air

2019 ◽  
Vol 4 (3) ◽  
pp. 125-134
Author(s):  
Sischa Anisa ◽  
Darwin Darwin ◽  
Muhammad Yasar

Abstrak.  Penelitian ini bertujuan untuk mengetahui efektivitas pengolahan air lindi (leachate) dengan proses aerob menggunakan aplikasi reaktor biofilm dan reaktor tanpa biofilm untuk mengurangi bahan pencemar pada lindi. Penimbunan sampah yang dilakukan setiap harinya di tempat pembuangan akhir (TPA) dapat menimbulkan masalah bagi lingkungan sekitarnya, dengan terbentuknya air lindi (leachate). Lindi yang terinfiltrasi akan mencemari air tanah. Pengolahan leachate sampah dilakukan secara fisika, kimia atau biologi tergantung pada karakteristik lindi. Kurangnya kandungan oksigen terlarut akan menghambat proses biodegradasi sehingga kandungan zat organik lindi akan meningkatmaka dilakukan uji coba pengolahan air lindi dengan teknologi aerasi menggunakan biofilm atau sistem pertumbuhan melekat MBBR untuk menurunkan kandungan bahan pencemar. Pengolahan dilakukan selama 10 hari olah menggunakan sistem kontinu, membandingkan reaktor tanpa biofilm (kontrol), reaktor MBBR menggunakan media k1 (kaldness) sebagai filter dan tempat melekatnya mikroorganisme serta reaktor MBBR  menggunakan arang  tempurung kelapa sebagai absorban. Volume yang digunakan 5 liter lindi untuk setiap reaktor. Dari pengolahan yang dilakukan diperoleh penurunan BOD adalah  64%, 73%, dan 75%; COD adalah mengalami kenaikan 8%, 14,3%, dan 35,8%; TKN adalah 44,44%, 56,73%, dan 75,7%, Fe adalah 9,041mg/l (influent); 8,033 mg/l; 9,0543 mg/l dan 5,053 mg/l.The Effect of Application Moving Bed Biofilm Reactor (MBBR) To Leachate Wastewater Treatment Aerobically To Water QualityAbstract. This study aims to determine the effectiveness of leachate with aerobic processes using biofilm reactors and reactors without biofilms to reduce pollutants in leachate. The landfill that is carried out every day in the landfill (TPA) can cause problems for the surrounding environment, with the formation of leachate (leachate). Infiltrated leachate will contaminate ground water. Processing of waste leachate is done in physics, chemistry or biology depending on leachate characteristics. Lack of dissolved oxygen will inhibit the biodegradation process so that the content of leachate organic matter will increase, then a trial of leachate treatment with aeration technology is carried out using a biofilm or MBBR's inherent growth system to reduce the pollutant content. Processing was carried out for 10 days using a continuous system, comparing the reactor without biofilm (control), the MBBR reactor using k1 (kaldness) as a filter and the attachment of microorganisms and the MBBR reactor using coconut shell charcoal as absorbent. The volume used is 5 liters of leachate for each reactor. From the processing carried out obtained a decrease in BOD is 64%, 73%, and 75%; COD has increase by8%, 14.3%, and 35.8%; TKN is 44.44%, 56.73%, and 75.7%, Fe is 9.041mg/l (influent); 8.033 mg / l; 9.0543 mg /l and 5.053 mg /l.  

1992 ◽  
Vol 26 (3-4) ◽  
pp. 703-711 ◽  
Author(s):  
B. Rusten ◽  
H. Ødegaard ◽  
A. Lundar

A novel moving bed biofilm reactor has been developed, where the biofilm grows on small, free floating plastic elements with a large surface area and a density slightly less than 1.0 g/cm3. The specific biofilm surface area can be regulated as required, up to a maximum of approximately 400 m2/m3. The ability to remove organic matter from concentrated industrial effluents was tested in an aerobic pilot-plant with two moving bed biofilm reactors in series and a specific biofilm surface area of 276 m2/m3. Treating dairy wastewater, the pilot-plant showed 85% and 60% COD removal at volumetric organic loading rates of 500 g COD/m3h and 900 g COD/m3h respectively. Based on the test results, the moving bed biofilm reactors should be very suitable for treatment of food industry effluents.


1993 ◽  
Vol 28 (10) ◽  
pp. 351-359 ◽  
Author(s):  
H. Ødegaard ◽  
B. Rusten ◽  
H. Badin

In 1988 the State Pollution Control Authority in Norway made recommendations regarding process designs for small wastewater treatment plants. Amongst these were recommendations for biological/chemical plants where biofilm reactors were used in combination with pretreatment in large septic tanks and chemical post treatment. At the same time the socalled “moving bed biofilm reactor” (MBBR) was developed by a Norwegian company. In this paper, experiences from a small wastewater treatment plant, based on the MBBR and on the recommendations mentioned, will be presented.


1997 ◽  
Vol 35 (6) ◽  
pp. 71-79 ◽  
Author(s):  
Bjørn Rusten ◽  
Odd Kolkinn ◽  
Hallvard Ødegaard

A new Moving Bed Biofilm Reactor (MBBR) has been developed, where the biomass is attached to small plastic elements that move freely along with the water in the reactors. Several small biological/chemical wastewater treatment plants are now using the MBBR process. Official control samples have shown that these plants are very reliable. The average effluent concentrations from the plants surveyed, three retrofits and two originally designed with the MBBR process, were as low as 11 mg BOD7/l (∼9 mg BOD5/l), 11 mg SS/l and 0.26 mg total P/l. Approximately 2 man hours per week were needed for operation of a plant originally designed with the MBBR process.


1997 ◽  
Vol 35 (2-3) ◽  
pp. 173-180 ◽  
Author(s):  
A. Broch-Due ◽  
R. Andersen ◽  
B. Opheim

Wastewaters from three integrated newsprint mills have been treated in a pilot plant Moving Bed Biofilm Reactor (MBBR). In the MBBR the biomass adheres to small plastic elements which move freely along with the water in the reactor. A reduction of 65-75% for COD and 85-95% for BOD was obtained at HRT of 4-5 hours. By prolonging the HRT the removal efficiencies of COD and BOD increased to about 80% and 96%, respectively. With a subsequent chemical precipitation a removal efficiency of COD up to 95% was achieved. The amount of chemicals needed for precipitation of the biologically treated wastewater was only a quarter to a third of that needed for chemical treatment of the untreated wastewater. The results showed the MBBR process to be competitive with conventional biological treatment systems and that treatment objectives can be met at short HRTs.


Chemosphere ◽  
2021 ◽  
Vol 275 ◽  
pp. 129937
Author(s):  
Alessandro di Biase ◽  
Maciej S. Kowalski ◽  
Tanner R. Devlin ◽  
Jan A. Oleszkiewicz

2020 ◽  
Vol 6 ◽  
pp. 340-344
Author(s):  
Andreia D. Santos ◽  
Rui C. Martins ◽  
Rosa M. Quinta-Ferreira ◽  
Luis M. Castro

Sign in / Sign up

Export Citation Format

Share Document