scholarly journals CASE STUDY OF REAL MANUFACTURING SYSTEM IMPROVING THROUGH SIMULATION MODELS

2020 ◽  
Vol 2020 (1) ◽  
pp. 3779-3783
Author(s):  
Erika Sujova ◽  
Roman Bambura ◽  
Helena Cierna
2014 ◽  
Vol 8 (4) ◽  
pp. 539-549 ◽  
Author(s):  
Hironori Hibino ◽  

In this paper, a method to Control a Manufacturing Cell by Driving Simulation Models (CMC-DSM) is proposed. The purposes of CMC-DSM is not only to directly operate the manufacturing cell while controlling and monitoring the manufacturing cell based on a simulation model in the manufacturing system execution phase, but also to support the manufacturing engineering processes based on the simulation model. In the manufacturing engineering processes, the simulation model is mixed and synchronized with real equipment and management applications in the case where parts of equipment and manufacturing management applications are not provided in the manufacturing cell. In the manufacturing system execution phase, when the simulation model acts in response to manufacturing system behaviors, the manufacturing system is controlled by synchronizing the simulation model behaviors. In this paper, the Environment required to Control a Manufacturing Cell by Driving Simulation Models (E-CMC-DSM) is proposed. The necessary functions for E-CMC-DSM are defined and developed. E-CMC-DSM consists of a simulator developed to drive simulation models (EMU), a soft-wiring system developed in this study, and a semi-standard industrial network middleware. The validation of ECMC-DSM was carried out through a case study.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Che-Jung Chang ◽  
Der-Chiang Li ◽  
Wen-Li Dai ◽  
Chien-Chih Chen

The wafer-level packaging process is an important technology used in semiconductor manufacturing, and how to effectively control this manufacturing system is thus an important issue for packaging firms. One way to aid in this process is to use a forecasting tool. However, the number of observations collected in the early stages of this process is usually too few to use with traditional forecasting techniques, and thus inaccurate results are obtained. One potential solution to this problem is the use of grey system theory, with its feature of small dataset modeling. This study thus uses the AGM(1,1) grey model to solve the problem of forecasting in the pilot run stage of the packaging process. The experimental results show that the grey approach is an appropriate and effective forecasting tool for use with small datasets and that it can be applied to improve the wafer-level packaging process.


1993 ◽  
Vol 25 (7) ◽  
pp. 923-944 ◽  
Author(s):  
J Patchell

In this paper, case-study evidence of the composition of four robot production systems is provided to reveal the linkages between local, regional, and national social divisions of labour. The relation-specific skill epitomizes the sophisticated procedures used to compose production systems, and the four case studies provide evidence of the communalities and varieties of these procedures. The geography of the interrelationships of the vertical divisions of labour of design-supplied suppliers and of the horizontal division of labour of design-approved suppliers is discussed. The cooperation and competition within this social division of labour allows Japan to function as a flexible manufacturing system.


Sign in / Sign up

Export Citation Format

Share Document