scholarly journals Numerical Investigation of Façade and Floor Glazing Systems

Author(s):  
Themistoklis Tsalkatidis ◽  
Magne Moastuen

The use of point-supported systems in glass façades and floors has become widespread due to their excellent structural properties. The combination of glass and metal, frequently found in modern architectural norms and expressions, has highlighted the role of such systems and the need for constant optimization of their design. This research paper aims to examine the influence of modifying several geometrical parameters such as the thickness and the weight of the structural spider connectors, the arm-core ratio of the spider, the thickness of the glass panel and the spider arm cavities on the structural performance of a spider connector produced by one of the market-leading manufacturers. Therefore, a parametric finite element analysis is performed, where four alternative versions of the spider are constructed, in addition to the reference version, using ANSYS software program. The numerical model of the reference spider is verified against experimental data from the manufacturer of the structural spider connector. A total number of twelve case studies that consist of different combinations of spiders and glass’ thickness are examined, five for the façade and seven for the floor glazing system. The focus of the numerical investigation is placed on the spider itself and the results of the parametric finite element analysis are presented and discussed. The effectiveness of having core cavities and hollowed-out arms in spiders is proven. The use of stronger but heavier spiders is an acceptable alternative if they are connected to larger glass panels that results in reducing the number of spiders without increasing significantly the total weight of the glazing system.

2018 ◽  
Vol 55 (4) ◽  
pp. 666-675
Author(s):  
Mihaela Tanase ◽  
Dan Florin Nitoi ◽  
Marina Melescanu Imre ◽  
Dorin Ionescu ◽  
Laura Raducu ◽  
...  

The purpose of this study was to determinate , using the Finite Element Analysis Method, the mechanical stress in a solid body , temporary molar restored with the self-curing GC material. The originality of our study consisted in using an accurate structural model and applying a concentrated force and a uniformly distributed pressure. Molar structure was meshed in a Solid Type 45 and the output data were obtained using the ANSYS software. The practical predictions can be made about the behavior of different restorations materials.


2011 ◽  
Vol 314-316 ◽  
pp. 1218-1221
Author(s):  
Hao Min Huang

Conventional methods of design to be completed ordinary hydraulic transmission gear gearbox design, but for such a non-planet-rule entity, and the deformation of the planet-gear contact stress will have a great impact on the planet gear, it will be very difficult According to conventional design. In this paper, ANSYS software to the situation finite element analysis, the planetary gear to simulate modeling study.


2011 ◽  
Vol 55-57 ◽  
pp. 664-669
Author(s):  
Jin Ning Nie ◽  
Hui Wang ◽  
De Feng Xie

According to the situation that the dual-friction drums on the new type towing machine lack stress analysis when designed, the safety is difficult to test and verify. The pull of wire rope in various positions was derived and calculated, so both compressive stress and tangent friction force generated by the pull of wire rope were calculated. The result made by ANSYS software demonstrates the safety of the left drum which suffers from larger loads, structure improvement measures are put forward for the drum.


Sign in / Sign up

Export Citation Format

Share Document