scholarly journals NUMERICAL STUDIES ON THE SEISMIC BEHAVIOUR OF A PREFABRICATED MULTI-STOREY MODULAR STEEL BUILDING WITH NEW-TYPE BOLTED JOINTS

2021 ◽  
Vol 236 ◽  
pp. 112103
Author(s):  
Andrew William Lacey ◽  
Wensu Chen ◽  
Hong Hao ◽  
Kaiming Bi

2018 ◽  
Vol 32 (34n36) ◽  
pp. 1840083 ◽  
Author(s):  
Xuetong Liu ◽  
Jianhua Liu ◽  
Huajiang Ouyang ◽  
Zhenbing Cai ◽  
Jinfang Peng ◽  
...  

The dynamic response of bolted joints subjected to torsional excitation is investigated experimentally and numerically. First, the effects of the initial preload and the angular amplitude on axial force loss of the bolt were studied. Second, the change of hysteresis loops with the increasing number of loading cycles was found under a larger torsional angle. At last, a fine-meshed three-dimensional finite element model was built to simulate the bolted joint under torsional excitation, from which the hysteresis loops were obtained under varying angular amplitudes. The results of numerical analysis are in good agreement with those of experiments.


2018 ◽  
Vol 38 (2) ◽  
pp. 242-252
Author(s):  
Jianrong Yang ◽  
Zhiyu Zhang

A new concept of a flexible rock-shed is presented for protection of the railway from falling rocks. The flexible rock-shed is made of flexible nets connected by specific spring spacer bars to an array of reinforced concrete portable frames which are linked by a longitudinal steel tube truss. To evaluate the performance of the flexible rock-shed, experimental and numerical studies are carried out in the present study. Impact tests are conducted on a full-scale partial model of the prototype structure when it is subjected to a falling block of 340 kg. The impact time interval, maximum deflection of the flexible net, tensile forces in the supporting ropes, and axial strains of spring spacer bars are recorded. To further examine the dynamic behavior of the flexible rock-shed, numerical simulations are also carried out by using the explicit finite element code ANSYS/LS-DYNA. It is found that the numerical results coincide well with the experimental data and both the numerical and experimental studies reveal that the structure can withstand impact energy of 50 kJ with all the materials working in the elastic range. The structural details are improved and the basis for the design and construction of similar structures in the future is provided.<br>


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Jianwen Zhong ◽  
Enzhi Wang ◽  
Yuande Zhou ◽  
Qingbin Li ◽  
Penghui Li

This paper presents a retrospective investigation into the performance of a new type of flexible-arch configurations in Shimenzi arch dam based on the past ten-year-long field measurements. The flexible-arch configurations are mainly comprised of artificial short joints at the middle downstream surface and a middle contraction joint with hinged well and enlarged arch ends with bending joints. Fundamental design considerations of these components are provided, and their contributions to the performance of Shimenzi arch dam are discussed in detail using the monitoring data from joint meters, strain gauges, and thermometers. Some elementary numerical studies have been conducted on a typical arch structure with different arrangements of artificial joints. Both the field data and numerical results prove well the effectiveness of the purposely built short joints and the middle contraction joint on the relaxation of tensile stress mobilization. Field survey data also clearly demonstrate the significance of the hinged well at the upstream side of the middle joint for a continuous arch force transfer.


2017 ◽  
Vol 11 (04) ◽  
pp. 1750014
Author(s):  
Jinwon Shin ◽  
Jinkyu Kim

This paper presents experimental and numerical studies for predicting the seismic responses of welded and bolted steel beam–column connections, namely, welded unreinforced flange and bolted web connection, and welded unreinforced flange and welded web connection. Cyclic tests of these connections composed of members applied widely to steel structures are conducted to examine their seismic performance. Numerical simulations with a focus on the bolted joint are conducted using a nonlinear finite element code. Two different strategies of modeling bolted parts are provided to improve the computational efficiency of numerical analysis: solid contact elements and more simply using shell connector elements. Numerical solutions obtained for full connection models are experimentally validated. The rotational capacity and dissipated energy of the welded and bolted connections are discussed. The local responses for stress and strain in the vicinity of welded and bolted joints are also investigated.


Sign in / Sign up

Export Citation Format

Share Document