scholarly journals Colony development of laser printed eukaryotic (yeast and microalga) microorganisms in co-culture

Author(s):  
Behnam Taidi ◽  
Guillaume Lebernede ◽  
Lothar Koch ◽  
Patrick Perre ◽  
Boris Chichkov

Laser Induced Forward Transfer (LIFT) bio-printing is one of a group of techniques that have been so far largely applied for printing mammalian cells. Bio-printing allows precise placement of viable cells in a defined matrix with the aim of directed three-dimensional development of tissues. In this study, laser bio-printing is used to precisely place eukaryotic microorganisms in specific patterns that allow growth and microscopic observation of the organisms micro-colonies. Saccharomyces cerevisiae var. bayanus and Chlorella vulgaris are used as model organisms for this purpose. Growth and development of the micro-colonies are studied by confocal microscopy and the colonies growth rates are determined by image analysis. The developed protocols for printing of microorganisms and growth-rates determination of the micro-colonies, are very promising for future studies of colony growth and development.

1985 ◽  
Vol 33 (5) ◽  
pp. 563 ◽  
Author(s):  
RF Williams ◽  
RA Metcalf

The growth and development of the shoot apex of Casuarina distyla, in which the leaves commonly occur in whorls of 6-8 members, is described. The mature apex of C. torulosa, a species with only four leaves per whorl, is also described. Stages in the development of the apex of C. distyla are illustrated with three-dimensional scale drawings. The fused stem-and-leaf nature of the vegetative axis is recognized and the growth of the blade, tube and buttress portions of the axes is presented in units of length and volume. Stages in the development of axillary buds are illustrated with three-dimensional scale drawings. Phyllotactic parameters for whorled systems of phyllotaxis in Nerium and Casuarina are presented along with those for decussate systems in Eucalyptus. The role of physical constraint in the genesis of form and the determination of rates of growth in shoot apices are discussed and it is suggested that rapid maturation of tissues may contribute to the continuous fall in the relative growth rate of the leaves.


Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

The present knowledge of the three-dimensional structure of ribosomes is far too limited to enable a complete understanding of the various roles which ribosomes play in protein biosynthesis. The spatial arrangement of proteins and ribonuclec acids in ribosomes can be analysed in many ways. Determination of binding sites for individual proteins on ribonuclec acid and locations of the mutual positions of proteins on the ribosome using labeling with fluorescent dyes, cross-linking reagents, neutron-diffraction or antibodies against ribosomal proteins seem to be most successful approaches. Structure and function of ribosomes can be correlated be depleting the complete ribosomes of some proteins to the functionally inactive core and by subsequent partial reconstitution in order to regain active ribosomal particles.


2003 ◽  
Vol 39 ◽  
pp. 11-24 ◽  
Author(s):  
Justin V McCarthy

Apoptosis is an evolutionarily conserved process used by multicellular organisms to developmentally regulate cell number or to eliminate cells that are potentially detrimental to the organism. The large diversity of regulators of apoptosis in mammalian cells and their numerous interactions complicate the analysis of their individual functions, particularly in development. The remarkable conservation of apoptotic mechanisms across species has allowed the genetic pathways of apoptosis determined in lower species, such as the nematode Caenorhabditis elegans and the fruitfly Drosophila melanogaster, to act as models for understanding the biology of apoptosis in mammalian cells. Though many components of the apoptotic pathway are conserved between species, the use of additional model organisms has revealed several important differences and supports the use of model organisms in deciphering complex biological processes such as apoptosis.


2013 ◽  
Vol 19 (S5) ◽  
pp. 58-61 ◽  
Author(s):  
Mino Yang ◽  
Jun-Ho Lee ◽  
Hee-Goo Kim ◽  
Euna Kim ◽  
Young-Nam Kwon ◽  
...  

AbstractDistribution of wax in laser printer toner was observed using an ultra-high-voltage (UHV) and a medium-voltage transmission electron microscope (TEM). As the radius of the wax spans a hundred to greater than a thousand nanometers, its three-dimensional recognition via TEM requires large depth of focus (DOF) for a volumetric specimen. A tomogram with a series of the captured images would allow the determination of their spatial distribution. In this study, bright-field (BF) images acquired with UHV-TEM at a high tilt angle prevented the construction of the tomogram. Conversely, the Z-contrast images acquired by the medium-voltage TEM produced a successful tomogram. The spatial resolution for both is discussed, illustrating that the image degradation was primarily caused by beam divergence of the Z-contrast image and the combination of DOF and chromatic aberration of the BF image from the UHV-TEM.


Sign in / Sign up

Export Citation Format

Share Document