scholarly journals A COMMENT ON UNSTEADY–PERIODIC FLOW FRICTION FACTOR: AN ANALYSIS ON EXPERIMENTAL DATA GATHERED IN PULSATILE PIPE FLOWS

2020 ◽  
pp. 16-27
Author(s):  
Melda Carpinlioğlu
Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 968-980
Author(s):  
Xueping Du ◽  
Zhijie Chen ◽  
Qi Meng ◽  
Yang Song

Abstract A high accuracy of experimental correlations on the heat transfer and flow friction is always expected to calculate the unknown cases according to the limited experimental data from a heat exchanger experiment. However, certain errors will occur during the data processing by the traditional methods to obtain the experimental correlations for the heat transfer and friction. A dimensionless experimental correlation equation including angles is proposed to make the correlation have a wide range of applicability. Then, the artificial neural networks (ANNs) are used to predict the heat transfer and flow friction performances of a finned oval-tube heat exchanger under four different air inlet angles with limited experimental data. The comparison results of ANN prediction with experimental correlations show that the errors from the ANN prediction are smaller than those from the classical correlations. The data of the four air inlet angles fitted separately have higher precisions than those fitted together. It is demonstrated that the ANN approach is more useful than experimental correlations to predict the heat transfer and flow resistance characteristics for unknown cases of heat exchangers. The results can provide theoretical support for the application of the ANN used in the finned oval-tube heat exchanger performance prediction.


1997 ◽  
Vol 119 (1) ◽  
pp. 20-25 ◽  
Author(s):  
H. Yuan ◽  
C. Sarica ◽  
S. Miska ◽  
J. P. Brill

A new test facility was designed and constructed to simulate flow in a horizontal well with a single perforation. A total of 635 tests were conducted with Reynolds numbers ranging from 5000 to 60,000 with influx to main rate ratios ranging from 1/5 to 1/100, and also for the no-influx case. The flow behavior in a single-perforation new friction expression for a single-perforation horizontal well was developed. A new simple correlation for the horizontal well friction factor was developed by applying experimental data to the general friction factor expression. The new friction factor correlation and experimental data were compared with the Asheim et al. (1992) data and model, and showed that the new correlation performed better than the Asheim et al. (1992) model.


1985 ◽  
Vol 107 (2) ◽  
pp. 280-283 ◽  
Author(s):  
D. J. Zigrang ◽  
N. D. Sylvester

A review of the explicit friction factor equations developed to replace the Colebrook equation is presented. Explicit friction factor equations are developed which yield a very high degree of precision compared to the Colebrook equation. A new explicit equation, which offers a reasonable compromise between complexity and accuracy, is presented and recommended for the calculation of all turbulent pipe flow friction factors for all roughness ratios and Reynold’s numbers.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 796
Author(s):  
Pavel Praks ◽  
Dejan Brkić

In this reply, we present updated approximations to the Colebrook equation for flow friction. The equations are equally computational simple, but with increased accuracy thanks to the optimization procedure, which was proposed by the discusser, Dr. Majid Niazkar. Our large-scale quasi-Monte Carlo verifications confirm that the here presented novel optimized numerical parameters further significantly increase accuracy of the estimated flow friction factor.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1175 ◽  
Author(s):  
Pavel Praks ◽  
Dejan Brkić

Widely used in hydraulics, the Colebrook equation for flow friction relates implicitly to the input parameters; the Reynolds number, Re and the relative roughness of an inner pipe surface, ε/D with an unknown output parameter; the flow friction factor, λ; λ = f (λ, Re, ε/D). In this paper, a few explicit approximations to the Colebrook equation; λ ≈ f (Re, ε/D), are generated using the ability of artificial intelligence to make inner patterns to connect input and output parameters in an explicit way not knowing their nature or the physical law that connects them, but only knowing raw numbers, {Re, ε/D}→{λ}. The fact that the used genetic programming tool does not know the structure of the Colebrook equation, which is based on computationally expensive logarithmic law, is used to obtain a better structure of the approximations, which is less demanding for calculation but also enough accurate. All generated approximations have low computational cost because they contain a limited number of logarithmic forms used for normalization of input parameters or for acceleration, but they are also sufficiently accurate. The relative error regarding the friction factor λ, in in the best case is up to 0.13% with only two logarithmic forms used. As the second logarithm can be accurately approximated by the Padé approximation, practically the same error is obtained also using only one logarithm.


Mathematics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 253 ◽  
Author(s):  
Lotfi Zeghadnia ◽  
Bachir Achour ◽  
Jean Robert

The Colebrook-White equation is often used for calculation of the friction factor in turbulent regimes; it has succeeded in attracting a great deal of attention from researchers. The Colebrook–White equation is a complex equation where the computation of the friction factor is not direct, and there is a need for trial-error methods or graphical solutions; on the other hand, several researchers have attempted to alter the Colebrook-White equation by explicit formulas with the hope of achieving zero-percent (0%) maximum deviation, among them Dejan Brkić and Pavel Praks. The goal of this paper is to discuss the results proposed by the authors in their paper:” Accurate and Efficient Explicit Approximations of the Colebrook Flow Friction Equation Based on the Wright ω-Function” and to propose more accurate formulas.


2015 ◽  
Vol 38 (8) ◽  
pp. 1387-1396 ◽  
Author(s):  
Amir Heydari ◽  
Elhameh Narimani ◽  
Fatemeh Pakniya

1974 ◽  
Vol 66 (1) ◽  
pp. 189-207 ◽  
Author(s):  
D. D. Joseph ◽  
T. S. Chen

The objective of this paper is to show how to formulate a bifurcation theory for pipe flows in terms of the friction factor. We compute the slope of the friction factor vs. Reynolds number curve and the frequency change for the time-periodic solution which bifurcates from Poiseuille flow through annular ducts.


Sign in / Sign up

Export Citation Format

Share Document