Expression of gap junctions bearing connexin-43 subunits and glial fibrillary acidic protein in the rat dorsal root ganglia following hind paw incision

Author(s):  
Vishwajit Ravindra Deshmukh ◽  
Pranav Prasoon ◽  
Subrata Basu Ray

Background: Dorsal root ganglion (DRG) neurons mediate the transmission of sensation from the periphery. DRG neurons are pseudounipolar in nature and enveloped by the satellite glial cells (SC). Satellite glial cells have been reported to influence neuronal excitability via gap junctions. Postoperative pain causes induction of various neurotransmitters such as connexin-43 and glial fibrillary acidic protein (GFAP), in the satellite cells surrounding neuronal cell bodiesObjective: To study the expression of connexin-43 and Glial fibrillary acidic protein after hind paw incision.Methods: Male adult Sprague-Dawley rats (n=12) were used. Rats were randomly divided into two groups. Group I (n=6) and Group II (n=6) for immunohistochemical study with glial fibrillary acidic protein (GFAP) and connexin-43 (Cx-43) respectively. In this study, rats were subjected to noxious stimuli on the right hind paw under general anesthesia. Dorsal root ganglia of both sides (L4 spinal nerves) were isolated after transcardiac fixation with 4% paraformaldehyde. The ganglia from the non-incised side were taken as the control group.Results: Unipolar neurons in the DRG were surrounded by satellite cells. The satellite cells were positive for GFAP, which showed increased expression on the surgical side after noxious stimuli. Cx-43 immunostaining also showed an increased expression in the periphery of neuronal cell bodies of surgical side representing the location of gap junctions and hyperexcitability of neurons.Conclusions: Small to medium sized neurons carry pain sensation from the periphery to the central nervous system. Increased gap junctions were noted in small neurons and satellite cells after surgery. Gap junctions might contribute to increased excitability of small neurons in postoperative pain.

2008 ◽  
Vol 71 (11) ◽  
pp. 2307-2311 ◽  
Author(s):  
SCOTT HAFNER ◽  
MARY T. SUTTON ◽  
JOSEPH HILL ◽  
PATRICK C. McCASKEY ◽  
LYNDA COLLINS KELLEY

A method is described for the identification of dorsal root ganglia (DRG)–associated sensory neurons within advanced meat recovery (AMR) product derived from bovine vertebral columns. This method relies on the unique microanatomy of sensory neurons and immunohistochemical staining, primarily for glial fibrillary acidic protein. Sensory neurons are variably sized unipolar neurons, exhibiting a single-cell process that is rarely seen in histologic sections. These neurons are surrounded by a prominent ring of glial fibrillary acidic protein–positive satellite cells that produce a distinctive and readily identifiable staining pattern in histologic sections. Fragmented DRG were detected to the 0.25% level in samples of ground beef or nonvertebral-origin AMR product spiked with these sensory ganglia. Similarly examined commercially produced nonvertebral-origin AMR product (n = 157) did not contain sensory ganglia, while 3.3% of vertebral-origin AMR product (n = 364) contained fragmented DRG.


Spine ◽  
2009 ◽  
Vol 34 (16) ◽  
pp. 1631-1637 ◽  
Author(s):  
Krzysztof Siemionow ◽  
Aleksandra Klimczak ◽  
Grzegorz Brzezicki ◽  
Maria Siemionow ◽  
Robert F. McLain

2005 ◽  
Vol 289 (4) ◽  
pp. G670-G678 ◽  
Author(s):  
Tian-Ying Huang ◽  
Menachem Hanani

There is evidence that sensitization of neurons in dorsal root ganglia (DRG) may contribute to pain induced by intestinal injury. We hypothesized that obstruction-induced pain is related to changes in DRG neurons and satellite glial cells (SGCs). In this study, partial colonic obstruction was induced by ligation. The neurons projecting to the colon were traced by an injection of 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate into the colon wall. The electrophysiological properties of DRG neurons were determined using intracellular electrodes. Dye coupling was examined with an intracellular injection of Lucifer yellow (LY). Morphological changes in the colon and DRG were examined. Pain was assessed with von Frey hairs. Partial colonic obstruction caused the following changes. First, coupling between SGCs enveloping different neurons increased 18-fold when LY was injected into SGCs near neurons projecting to the colon. Second, neurons were not coupled to other neurons or SGCs. Third, the firing threshold of neurons projecting to the colon decreased by more than 40% ( P < 0.01), and the resting potential was more positive by 4–6 mV ( P < 0.05). Finally, the number of neurons displaying spontaneous spikes increased eightfold, and the number of neurons with subthreshold voltage oscillations increased over threefold. These changes are consistent with augmented neuronal excitability. The pain threshold to abdominal stimulation decreased by 70.2%. Inflammatory responses were found in the colon wall. We conclude that obstruction increased neuronal excitability, which is likely to be a major factor in the pain behavior observed. The augmented dye coupling between glial cells may contribute to the neuronal hyperexcitability.


1991 ◽  
Vol 112 (6) ◽  
pp. 1205-1213 ◽  
Author(s):  
D E Weinstein ◽  
M L Shelanski ◽  
R K Liem

The glial fibrillary acidic protein (GFAP) is a glial-specific intermediate filament protein, which is expressed in astrocytes in the central nervous system, as well as in astrocytoma cell lines. To investigate the function of GFAP, we have studied the human astrocytoma cell line, U251, which constitutively expresses GFAP and vimentin in the same 10-nm filaments. These cells respond to neurons in vitro in the same way as primary astrocytes: they withdraw from the cell cycle, support neuronal cell survival and neurite outgrowth, and they extend complex, GFAP-positive processes. To determine the role of GFAP in these responses, we have specifically suppressed its expression by stably transfecting the U251 cells with an antisense GFAP construct. Two stable antisense cell lines from separate transfections were isolated and were shown to be GFAP negative by Northern and Western blot analyses, and by immunofluorescence studies. The antisense cell lines were inhibited in their ability to extend significant glial processes in response to neurons. In culture with primary neurons, the average increase in process length of the U251 cells was nearly 400%, as compared to only 14% for the antisense transfectants. The other neuron induced responses of astrocytes, i.e., proliferative arrest and neuronal support, were not affected in these cell lines. These data support the conclusion that the glial-specific intermediate filament protein, GFAP, is required for the formation of stable astrocytic processes in response to neurons.


2000 ◽  
Vol 48 (2) ◽  
pp. 167-177 ◽  
Author(s):  
Stefano Farioli-Vecchioli ◽  
Stefaan Raes ◽  
Marc Espeel ◽  
Frank Roels ◽  
Katharina D'Herde

Studying the regulation of peroxisome (Px) expression could improve our understanding of human peroxisomal disorders. The granulosa of the largest preovulatory quail follicles proved to be a relevant model because (a) Px expression changes according to the follicular maturation stage and (b) Px expression varies regionally according to the distance of the granulosa relative to the germinal disc region containing the female gamete (oocyte). The question was asked whether Px expression is related to the extent of metabolic cell coupling and whether zonal Px variation is causally related to oocytal factors. This was evaluated by the presence of catalase and Cx-43 (marker proteins for peroxisomes and gap junctions, respectively) and by in vitro experiments with granulosa explants. The data obtained show that the expression of Cx-43 and Px is inversely correlated both temporally and spatially. Uncoupling of gap junctions results in an upregulation of α-catalase immunofluorescence. This is in agreement with reports that gap junctions are often negatively affected by Px proliferators. The zonal gradient in Px expression appears to be imposed by the oocyte, as is the case for steroidogenesis and proliferative capacity in the granulosa epithelium.


2007 ◽  
Vol 19 (5) ◽  
pp. 634 ◽  
Author(s):  
Mariana Ríos ◽  
Marcela Hermoso ◽  
Trinidad M. Sánchez ◽  
Horacio B. Croxatto ◽  
Manuel J. Villalón

The oviducal transport of eggs to the uterus normally takes 72–96 h in the rat, but this is reduced to less than 20 h after a single injection of oestradiol (E2). This accelerated transport is associated with an increased frequency of pendular movements in the isthmic segment of the oviduct, with increased levels of the gap junction (GJ) component Connexin (Cx) 43, and is antagonised by progesterone (P). In the present study, we investigated the effect of these hormones on the instant and directional velocity of pendular movements and the role of the GJ and its Cx43 component in the kinetic response of the oviduct to E2 and P. Using microspheres as egg surrogates, microsphere instant velocity (MIV) was measured following treatment with E2, P or P + E2, which accelerate or delay egg transport. Microspheres were delivered into the oviduct of rats on Day 1 of pregnancy and their movement within the isthmic segment was recorded. Oestrogen increased MIV with faster movement towards the uterus. After P or P + E2, MIV was similar to that in the control group. Two GJ uncouplers, namely 18α- and 18β-glycyrrhetinic acid, blocked the effect of E2 on MIV. Connexin 43 mRNA levels increased over that seen in control with all treatments. In conclusion, the effects of E2 on MIV resulted in faster movements that produced accelerated egg transport towards the uterus. Gap junctions are probably involved as smooth muscle synchronisers in this kinetic effect of E2, but the opposing effects of E2 and P are not exerted at the level of Cx43 transcription.


2007 ◽  
Vol 18 (6) ◽  
pp. 669-676 ◽  
Author(s):  
Nicoletta Gagliano ◽  
Claudia Moscheni ◽  
Carlo Torri ◽  
Elena Donetti ◽  
Ivana Magnani ◽  
...  

1989 ◽  
Vol 136 (1) ◽  
pp. 9-11 ◽  
Author(s):  
Maria Pilar Alvarez ◽  
Marian Teresa Solas ◽  
Isabel Suarez ◽  
Benjam&iacute;n Fernandez

2004 ◽  
Vol 1 (1) ◽  
pp. 85-93 ◽  
Author(s):  
ÅSA FEX SVENNINGSEN ◽  
DAVID R. COLMAN ◽  
LILIANA PEDRAZA

The evolutionary origin of myelinating cells in the vertebrate nervous system remains a mystery. A clear delineation of the developmental potentialities of neuronal support cells in the CNS and PNS might aid in formulating a hypothesis about the origins of myelinating cells. Although a glial-precursor cell in the CNS can differentiate into oligodendrocytes (OLs), Schwann cells (SCs) and astrocytes, a homologous multipotential cell has not yet been found in the PNS. Here, we identify a cell type of embryonic dorsal root ganglia (DRG) of the PNS – the satellite cell – that develops into OLs, SCs and astrocytes. Interestingly, satellite-cell-derived OL precursors were found in cultures prepared from embryonic day 17 (E17) to postnatal day 8 (P8) ganglia, but not from adult DRGs, revealing a narrow developmental window for multipotentiality. We suggest that compromising the organization of the ganglia triggers a differentiation pathway in a subpopulation of satellite cells, inducing them to become myelinating cells with either a CNS or PNS phenotype. Our data provide an additional, novel piece in the myelinating-cell-precursor puzzle, and lead to the concept that cells in the CNS and PNS that function to ensheath neuronal cell bodies and axons can differentiate into OLs, SCs and astrocytes. In sum, it appears that glial fate might be determined over and above the CNS/PNS dichotomy. Last, we suggest that primordial ensheathing cells form the original cell population in which the myelination program first evolved.


Sign in / Sign up

Export Citation Format

Share Document