Anvendelse af intraoral scanner til detektion og monitorering af tandsygdomme

2022 ◽  
Vol 47 (1) ◽  
pp. 116-130
Author(s):  
Ana Raquel Benetti ◽  
Stavroula Michou
Keyword(s):  
2021 ◽  
Vol 11 (3) ◽  
pp. 1220
Author(s):  
Azeem Ul Yaqin Syed ◽  
Dinesh Rokaya ◽  
Shirin Shahrbaf ◽  
Nicolas Martin

The effect of a restored machined hybrid dental ceramic crown–tooth complex is not well understood. This study was conducted to determine the effect of the stress state of the machined hybrid dental ceramic crown using three-dimensional finite element analysis. Human premolars were prepared to receive full coverage crowns and restored with machined hybrid dental ceramic crowns using the resin cement. Then, the teeth were digitized using micro-computed tomography and the teeth were scanned with an optical intraoral scanner using an intraoral scanner. Three-dimensional digital models were generated using an interactive image processing software for the restored tooth complex. The generated models were imported into a finite element analysis software with all degrees of freedom concentrated on the outer surface of the root of the crown–tooth complex. To simulate average occlusal load subjected on a premolar a total load of 300 N was applied, 150 N at a buccal incline of the palatal cusp, and palatal incline of the buccal cusp. The von Mises stresses were calculated for the crown–tooth complex under simulated load application was determined. Three-dimensional finite element analysis showed that the stress distribution was more in the dentine and least in the cement. For the cement layer, the stresses were more concentrated on the buccal cusp tip. In dentine, stress was more on the cusp tips and coronal 1/3 of the root surface. The conventional crown preparation is a suitable option for machined polymer crowns with less stress distribution within the crown–tooth complex and can be a good aesthetic replacement in the posterior region. Enamic crowns are a good viable option in the posterior region.


Author(s):  
Alexander Schmidt ◽  
Leona Klussmann ◽  
Maximiliane A. Schlenz ◽  
Bernd Wöstmann

Abstract Objectives Due to the partly strongly differing results in the literature, the aim of the present study was to investigate a possible deformation of the mandible during mouth opening using an intraoral scanner (IOS) and a conventional impression for comparison with a reference aid. Materials and methods Four steel spheres were reversibly luted in the mandibular (n = 50) with a metallic reference aid at maximum mouth opening (MMO). Two digital impressions (Trios3), at MMO and at slightly mouth opening SMO and a conventional impression (Impregum), were taken as the measuring accuracy of the reference structure was already known. Difference between MMO-SMO for digital impressions and deviations between digital and conventional (SMO) were calculated. Furthermore, the angle between the normal vectors of two constructed planes was measured. Statistical analysis was performed with SPSS25. Results Deviations for linear distances ranged from −1 ± 3 μm up to 17 ± 78 μm (digital impressions, MMO-SMO), from 19 ± 16 μm up to 132 ± 90 μm (digital impressions, SMO), and from 28 ± 17 μm up to 60 ± 52 μm (conventional impressions, SMO). There were no significant differences for digital impressions (MMO-SMO), and there were significant differences between the conventional and digital impressions at SMO. Conclusions Based on the results of the present study, no mandibular deformation could be detected during mouth opening with regard to the digital impressions. The results were rather within the measuring tolerance of the intraoral scanner. Clinical relevance Based on the present study, no deformation of the mandibular during mouth opening could be observed at the level previously assumed. Therewith related, dental techniques related to a possible mandibular deformation therefore should be reconsidered.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Keunbada Son ◽  
Young-Tak Son ◽  
Ji-Min Lee ◽  
Kyu-Bok Lee

AbstractThis study evaluated the marginal and internal fit and intaglio surface trueness of interim crowns fabricated from tooth preparation scanned at four finish line locations. The right maxillary first molar tooth preparation model was fabricated using a ceramic material and placed in four finish line locations (supragingival, equigingival, subgingival, and subgingival with a cord). Intraoral scanning was performed. Crowns were designed based on the scanned area. Interim crowns were fabricated using a stereolithography three-dimensional (3D) printer (N = 16 per location). Marginal and internal fit were evaluated with a silicone replica technique. Intaglio surface trueness was evaluated using a 3D inspection software. One-way analysis of variance and Tukey HSD test were performed for comparisons (α = 0.05). The marginal and internal fit showed significant differences according to locations (P < 0.05); the marginal fit showed the best results in the supragingival finish line (P < 0.05). Intaglio surface trueness was significantly different in the marginal region, with the highest value in the subgingival location (P < 0.05). Crowns fabricated on the subgingival finish line caused inaccurate marginal fit due to poor fabrication reproducibility of the marginal region. The use of an intraoral scanner should be decided on the clinical situation and needs.


2021 ◽  
Vol 11 (13) ◽  
pp. 5786
Author(s):  
Hwa-Jung Lee ◽  
Jeongho Jeon ◽  
Hong Seok Moon ◽  
Kyung Chul Oh

This technical procedure demonstrates a 4-step completely digital workflow for the fabrication of complete dentures in edentulous patients. The digital scan data of the edentulous arches were obtained using an intraoral scanner, followed by the fabrication of modeless trial denture bases using additive manufacturing. Using the trial denture base and a wax rim assembly, the interarch relationship was recorded. This record was digitized using an intraoral scanner and reversed for each maxillary and mandibular section individually. The digital scan data directly obtained using the intraoral scanner were superimposed over the reversed data, establishing a proper interarch relationship. The artificial teeth were arranged virtually and try-in dentures were additively manufactured. Subsequently, the gingival and tooth sections were additively manufactured individually and characterized. Thus, fabrication of digital complete dentures can be accomplished using digital data characteristics. The workflow includes data acquisition using an intraoral scanner, data processing using reverse engineering and computer-aided design software programs, and additive manufacturing.


2018 ◽  
Vol 120 (1) ◽  
pp. 9-12 ◽  
Author(s):  
Ippei Hamanaka ◽  
Kota Isshi ◽  
Yutaka Takahashi
Keyword(s):  

Author(s):  
Jesús Peláez Rico ◽  
Jorge Cortés-Bretón Brinkmann ◽  
María Carrión Martín ◽  
Mabel Albanchez González ◽  
Celia Tobar Arribas ◽  
...  

The aim of this clinical report is to describe a maxillary full-arch implant supported restoration with immediate loading performed by means of an entirely digital workflow with photogrammetric system and intraoral scanning. A female patient with an edentulous maxillary arch attended the dental clinic seeking a maxillary fixed restoration. After treatment planning, six implants were placed using a surgical splint fabricated digitally by intraoral scanning of her previous removable prosthesis. Multi-unit abutments were fitted and two digital impressions were taken, one with a photogrammetric system for determining implant positions, and the other with an intraoral scanner for soft tissue registration. The acrylic resin structure of the immediate prosthesis was milled and placed within 8 hours of implant surgery. This provisional structure fitted correctly and provided adequate esthetics and function. Radiographic and clinical follow-up after 24 months observed adequate implant evolution.


Sign in / Sign up

Export Citation Format

Share Document