scholarly journals Platinum group minerals in chromitite bodies of the Santa Elena Nappe, Costa Rica: mineralogical characterization by electron microprobe and Raman-spectroscopy

2010 ◽  
Vol 62 (1) ◽  
pp. 161-171 ◽  
Author(s):  
Federica Zaccarini ◽  
Ronald J. Bakker ◽  
Giorgio Garuti ◽  
Thomas Aiglsperger ◽  
Oskar A. R. Thalhammer ◽  
...  
Author(s):  
Alexandre Tisseaux Navarro ◽  
Mauro Vargas Hernández ◽  
Daniel Ballestero Sakson ◽  
Juan Pablo Salazar Ceciliano ◽  
Sergio Cambronero Solano ◽  
...  
Keyword(s):  

El Área Marina de Manejo de bahía Santa Elena (BSE) es un sitio importante para las comunidades cercanas debido a su potencial turístico y pesquero. El objetivo de este trabajo es comprender algunos aspectos de la hidrografía de BSE. Se establecieron dos transectos transversales al canal principal de la bahía Santa Elena para la medición de corrientes, temperatura, concentración clorofila, oxígeno disuelto, salinidad y turbidez; además, se realizó un levantamiento batimétrico del área. El movimiento del agua en BSE está influenciadas por la batimetría; y las variaciones en las condiciones meteorológicas pueden provocar cambios en las características físicas, químicas y biológicas del cuerpo de agua. Comprender estos aspectos puede ser de gran ayuda para realizar un mejor uso de la BSE y de esta forma aprovechar de manera sostenible los recursos que ofrece.


2018 ◽  
Author(s):  
Danelle Carr ◽  
◽  
Matthew Loocke ◽  
Jonathan E. Snow
Keyword(s):  

Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 545
Author(s):  
Andrei Y. Barkov ◽  
Nadezhda D. Tolstykh ◽  
Robert F. Martin ◽  
Andrew M. McDonald

Tamuraite, ideally Ir5Fe10S16, occurs as discrete phases (≤20 μm) in composite inclusions hosted by grains of osmium (≤0.5 mm across) rich in Ir, in association with other platinum-group minerals in the River Ko deposit of the Sisim Placer Zone, southern Krasnoyarskiy Kray, Russia. In droplet-like inclusions, tamuraite is typically intergrown with Rh-rich pentlandite and Ir-bearing members of the laurite–erlichmanite series (up to ~20 mol.% “IrS2”). Tamuraite is gray to brownish gray in reflected light. It is opaque, with a metallic luster. Its bireflectance is very weak to absent. It is nonpleochroic to slightly pleochroic (grayish to light brown tints). It appears to be very weakly anisotropic. The calculated density is 6.30 g·cm−3. The results of six WDS analyses are Ir 29.30 (27.75–30.68), Rh 9.57 (8.46–10.71), Pt 1.85 (1.43–2.10), Ru 0.05 (0.02–0.07), Os 0.06 (0.03–0.13), Fe 13.09 (12.38–13.74), Ni 12.18 (11.78–13.12), Cu 6.30 (6.06–6.56), Co 0.06 (0.04–0.07), S 27.23 (26.14–27.89), for a total of 99.69 wt %. This composition corresponds to (Ir2.87Rh1.75Pt0.18Ru0.01Os0.01)Σ4.82(Fe4.41Ni3.90Cu1.87Co0.02)Σ10.20S15.98, calculated based on a total of 31 atoms per formula unit. The general formula is (Ir,Rh)5(Fe,Ni,Cu)10S16. Results of synchrotron micro-Laue diffraction studies indicate that tamuraite is trigonal. Its probable space group is R–3m (#166), and the unit-cell parameters are a = 7.073(1) Å, c = 34.277(8) Å, V = 1485(1) Å3, and Z = 3. The c:a ratio is 4.8462. The strongest eight peaks in the X-ray diffraction pattern [d in Å(hkl)(I)] are: 3.0106(26)(100), 1.7699(40)(71), 1.7583(2016)(65), 2.7994(205)(56), 2.9963(1010)(50), 5.7740(10)(45), 3.0534(20)(43) and 2.4948(208)(38). The crystal structure is derivative of pentlandite and related to that of oberthürite and torryweiserite. Tamuraite crystallized from a residual melt enriched in S, Fe, Ni, Cu, and Rh; these elements were incompatible in the Os–Ir alloy that nucleated in lode zones of chromitites in the Lysanskiy layered complex, Eastern Sayans, Russia. The name honors Nobumichi Tamura, senior scientist at the Advanced Light Source of the Lawrence Berkeley National Laboratory, Berkeley, California.


2004 ◽  
Vol 42 (2) ◽  
pp. 563-582 ◽  
Author(s):  
T. Oberthur ◽  
F. Melcher ◽  
L. Gast ◽  
C. Wohrl ◽  
J. Lodziak

2021 ◽  
Vol 59 (6) ◽  
pp. 1339-1362
Author(s):  
Malose M. Langa ◽  
Pedro J. Jugo ◽  
Matthew I. Leybourne ◽  
Danie F. Grobler

ABSTRACT The UG-2 chromitite layer, with its elevated platinum-group element content, is a key marker horizon in the eastern and western limbs of the Bushveld Igneous Complex and the largest platinum-group element chromite-hosted resource of its kind in the world. In contrast, much less is known about its stratigraphic equivalent in the northern limb, the “UG-2 equivalent” (UG-2E) chromitite. Recent studies on chromite mineral chemistry show similarities between the UG-2 and sections of the UG-2E, but also that the UG-2E was partially contaminated by assimilation of local metasedimentary rocks. Here, we provide a detailed characterization of sulfide minerals and platinum-group minerals in a suite of samples from the UG-2E and compare the results with data obtained from a reference suite of samples from the UG-2. Results from petrographic observations, electron probe microanalysis, laser ablation-inductively coupled plasma-mass spectrometry, quantitative evaluation of materials by scanning electron microscopy, and δ34S isotopes show that: (1) sulfide minerals in the UG-2E and UG-2 consist mainly of pentlandite-chalcopyrite-pyrrhotite, but pyrrhotite is significantly more abundant in the UG-2E and almost absent in the UG-2; (2) iron contents in pentlandite from the UG-2E are significantly higher than in the UG-2; (3) platinum-group element contents within sulfide minerals are different between the two chromitites; (4) UG-2E platinum-group minerals are dominated by arsenides and bismuthotellurides, and by alloys and platinum-group element-sulfide minerals in the UG-2; (5) sulfide mineral chemistry and δ34S values indicate some crustal contamination of the UG-2E; and (6) sulfide mineral and secondary silicate mineral textures in both the UG-2E and UG-2 are indicative of minor, millimeter- to centimeter-scale, hydrothermal alteration. From our observations and results, we consider the UG-2E chromitite in the northern limb to be the equivalent to the UG-2 in the eastern and western limbs that has been contaminated by assimilation of Transvaal Supergroup footwall rocks during emplacement. The contamination resulted in UG-2E sulfide mineral elemental contents and platinum-group mineral types and abundances that are distinct from those of the UG-2 in the rest of the Bushveld.


2021 ◽  
Author(s):  
Olga Kiseleva ◽  
Yuriy Ochirov ◽  
Sergey Zhmodik ◽  
Brian Nharara

<p>The studied area is in the southeastern region of Eastern Sayan. Several tectonically dissected ophiolite complexes were exposed along the margin of the Gargan block and tectonically thrust over this block. Placer nuggets of PGE alloys from the Kitoy river were examined using a scanning electron microscope. Platinum-group minerals (PGM's) in placer deposits provide vital information about the types of their primary source rocks and ores as well as the conditions of formation and alteration. The primary PGM's are Os-Ir-Ru alloys, (Os, Ru)S<sub>2</sub>, and (Os, Ir, Ru)AsS. (Os, Ru)S<sub>2</sub> form overgrowth around the Os-Ir-Ru alloys. The secondary, remobilized PGM's are native osmium, (Ir-Ru) alloys, garutite (Ir, Ni, Fe), zaccarinite (RhNiAs), selenides, tellurides (Os, Ir, Ru), and non-stoichiometric (Pd, Pt, Fe, Te, Bi) phases (Fig.1). Secondary PGM's (garutite and RhNiAs) form rims around Os-Ir-Ru alloys, intergrowth with them, or form polyphase aggregates. Such PGM's (identical in composition and microstructure) are also found in chromitites from Neoproterozoic ophiolite massifs of Eastern Sayan (Kiseleva et al., 2014; 2020). Platinum-metal minerals, exotic for ophiolites, are found among secondary PGM's such as selenides and tellurides (Os, Ir, Ru), (Pt, Pd)<sub>3</sub>Fe, Pd<sub>3</sub>(Te, Bi), (Au, Ag), and non-stoichiometric (Pd, Pt, Fe, Te, Bi) phases. They occur as inclusions in the Os-Ir-Ru alloys or fill cracks in crushed grains of primary PGM's. PGM's in placer deposits of the Kitoy river are similar to the mineral composition of PGE in chromitites of the Ospa-Kitoy ophiolitic massif, which contain Pt-Pd minerals and Pt impurities in Os-Ir-Ru alloys (Kiseleva et al., 2014). Selenides (Os-Ir-Ru) are rare within PGM's from ophiolite chromitites (Barkov et al., 2017; Airiyants et al., 2020) and also occur in chromitites of the Dunzhugur ophiolite massif (Kiseleva et al., 2016). Features of selenides and tellurides (Os, Ir, Ru) indicate their late formation as a result of the influence of magmatic and metamorphic fluids on primary PGE alloys. The filling of cracks in crushed (Os-Ir-Ru) alloys indicates that selenides and tellurides formed during tectonic deformation processes. The source of platinum-group minerals from the Kitoy river placer is the Ospa-Kitoy ophiolite massif, and primarily chromitites.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gepj.eb9553e3c70065361211161/sdaolpUECMynit/12UGE&app=m&a=0&c=f3ccc1c7cf7d06094d2afaa34fe9d9a1&ct=x&pn=gepj.elif&d=1" alt=""></p><p>Figure 1. BSE microphotographs of PGM from from alluvial placers of the Kitoy river</p><p>Mineral chemistry was determined at the Analytical Centre for multi-elemental and isotope research SB RAS. This work supported by RFBR grants: No. 16-05-00737a,  19-05-00764а, 19-05-00464a and the Russian Ministry of Education and Science</p><p>References</p><p>Airiyants E.V., Belyanin D.K., Zhmodik S.M., Agafonov L.V., Romashkin P.A.  // Ore Geology Reviews. 2020. V. 120. P.  103453</p><p>Barkov A.Y., Nikiforov A.A., Tolstykh N.D., Shvedov G.I., Korolyuk V.N. // European J. Mineralogy. 2017. V.29(9). P.613-621.</p><p>Kiseleva O.N., Zhmodik S.M., Damdinov B.B., Agafonov L.V., Belyanin D.K. // Russian Geology and Geophysics. <strong>2014</strong>. V. 55. P. 259-272.</p><p>Kiseleva O.N., Airiyants E.V., Belyanin D.K., Zhmodik S.M., Ashchepkov I.V., Kovalev S.A. // Minerals. 2020. V. 10. N 141. P. 1-30.</p><p>Kiseleva O.N., Airiyants E.V., Zhmodik S.M., Belyanin D.K / Russian and international conference proceedings “The problems of geology and exploitation of platinum metal deposits” – St.Petersburg: Publishing house of St.Petersburg State University. 2016. 184 P.</p>


Sign in / Sign up

Export Citation Format

Share Document