Numerical Study of a Flow Through a Grid Placed in a Bunsen Burner

2020 ◽  
Vol 38 (2) ◽  
pp. 525-532
Author(s):  
Mounir Benzitouni ◽  
Zoubir Nemouchi ◽  
Mohamed Boulahlib
2021 ◽  
Vol 1094 (1) ◽  
pp. 012120
Author(s):  
Hussein Togun ◽  
Ali Abdul Hussain ◽  
Saja Ahmed ◽  
Iman Abdul hussain ◽  
Huda Shaker

2011 ◽  
Vol 54 (9) ◽  
pp. 2412-2420 ◽  
Author(s):  
ZhaoQin Huang ◽  
Jun Yao ◽  
YueYing Wang ◽  
Ke Tao

Author(s):  
Junji Nagao ◽  
Shigeru Matsuo ◽  
Mamun Mohammad ◽  
Toshiaki Setoguchi ◽  
Heuy Dong Kim

2021 ◽  
pp. 117047
Author(s):  
Shuang Song ◽  
Liangwan Rong ◽  
Kejun Dong ◽  
Yansong Shen

2017 ◽  
Author(s):  
Sonawane C. R ◽  
Chintan Kantharia ◽  
Karan Shah ◽  
Neel Patel ◽  
Prikesh Bhatia ◽  
...  

2009 ◽  
Vol 4 (1) ◽  
Author(s):  
Elham Ameri ◽  
M Nasr Esfahany

The effect of the bend angle on the unsteady developing turbulent air flow through oscillating circular-sectioned curved pipes with the various angles of 180°, 135° and 90° was investigated numerically. The bends had a diameter of 106 mm and a curvature radius ratio of 6.0 with long, straight upstream and downstream sections. Results of the mean velocity and static pressure were obtained at a Reynolds number of 31200 and at various longitudinal stations. The velocity of the primary flow was illustrated in the form of contour map and vector diagram. From the inlet plane of the three oscillating bends to the angle of 45°, the velocity fields in 180°, 90° and 135° bends are similar. The high velocity regions, however, occur near the upper and lower parts in 90° and 180° bends, respectively.


Sign in / Sign up

Export Citation Format

Share Document