scholarly journals The Application of AVC System in Inner Mongolia Wind Farm

2021 ◽  
Vol 8 (2) ◽  
pp. 42-46
Author(s):  
Junfei Han ◽  
Hua Li

The key technologies of self-regulating voltage control for wind farms are studied, and the technical indicators of the AVC main and sub-stations of wind farms in the field of large-scale wind power generation are defined. Wind farm voltage control (AVC) control strategy, developed a wind farm AVC simulation test platform, prepared a wind farm AVC field test and conducted a field test. According to the actual control effect of wind farm AVC, the dynamic response characteristics of wind farm AVC and the reactive power performance of wind farm AVC are evaluated according to relevant technical standards.

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3177 ◽  
Author(s):  
Yunqi Xiao ◽  
Yi Wang ◽  
Yanping Sun

A reactive power/voltage control strategy is proposed that uses wind turbines as distributed reactive power sources to optimize the power flow in large-scale wind farms and reduce the overall losses of the collector system. A mathematical model of loss optimization for the wind farm collector systems is proposed based on a reactive power/voltage sensitivity analysis; a genetic algorithm (GA) and particle swarm optimization (PSO) algorithm are used to validate the optimization performances. The simulation model is established based on a large-scale wind farm. The results of multiple scenarios show that the proposed strategy is superior to the traditional methods with regard to the reactive power/voltage control of the wind farm and the loss reduction of the collector system. Furthermore, the advantages in terms of annual energy savings and environmental protection are also estimated.


2012 ◽  
Vol 588-589 ◽  
pp. 574-577 ◽  
Author(s):  
Yan Juan Wu ◽  
Lin Chuan Li

Some faults will result wind turbine generators off-grid due to low grid voltage , furthermore, large-scale wind farms tripping can result in severe system oscillation and aggravate system transient instability . In view of this, static compensator (STATCOM) is installed in the grid containing large-scale wind farm. A voltage feedforward control strategy is proposed to adjust the reactive power of STATCOM compensation and ensure that the grid voltage is quickly restored to a safe range. The mathematical model of the doubly-fed induction wind generator (DFIG) is proposed. The control strategy of DFIG uses PI control for rotor angular velocity and active power. 4-machine system simulation results show that the STATCOM reactive power compensation significantly improve output active power of large-scale wind farm satisfying transient stability, reduce the probability of the tripping, and improve the utilization efficiency of wind farms.


2013 ◽  
Vol 433-435 ◽  
pp. 1325-1329
Author(s):  
Wei Zheng ◽  
Li Guang Shi ◽  
Shi Qun Li ◽  
Yong Zhi ◽  
Run Qing Bai ◽  
...  

With the application of FACTS devices in large-scale new energy base, in the light of FACTS devices installed in each wind farm in Gansu Jiuquan, which can supply reactive compensation for the power transmission system and stable the grid voltage, in this paper the magnetic controllable reactor (MCR) type static var compensator (SVC) is studied deeply. The paper introduces the working principle and characteristics of the MCR-SVC. In connection with MCR equivalent circuit, the simulation model is built in MATLAB/SPS, the simulation results and field tests verify the reactive power compensation effect of MCR-SVC during wind farms.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6413
Author(s):  
Feng-Chang Gu ◽  
Hung-Cheng Chen

Large-scale wind farms in commercial operations have demonstrated growing influence on the stability of an electricity network and the power quality thereof. Variations in the output power of large-scale wind farms cause voltage fluctuations in the corresponding electrical networks. To achieve low-voltage ride-through capability in a doubly fed induction generator (DFIG) during a fault event, this study proposes a real-time reactive power control strategy for effective DFIG application and a static synchronous compensator (STATCOM) for reactive power compensation. Mathematic models were developed for the DFIG and STATCOM, followed by the development of an indirect control scheme for the STATCOM based on decoupling dual-loop current control. Moreover, a real-world case study on a commercial wind farm comprising 23 DFIGs was conducted. The voltage regulation performance of the proposed reactive power control scheme against a fault event was also simulated. The simulation results revealed that enhanced fault ride-through capability and prompt recovery of the output voltage provided by a wind turbine generator could be achieved using the DFIG along with the STATCOM in the event of a three-phase short-circuit fault.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2144
Author(s):  
Min-gang Tan ◽  
Yi Tang ◽  
Chaohai Zhang

It is of great importance for power grids to have black-start capability for rapid recovery, and there is great theoretical significance and practical application value in studying how to use wind farms as the black-start power supply source for power grids with large-scale renewable energy generation. In this paper, a black-start scheme using a permanent-magnet synchronous generator (PMSG)-based wind farm as black-start power supply source is formulated. First, a diesel generator is used as an external supporting power supply for the self-start of a wind power unit (WPU). Then, after all the planned WPUs operate normally, the wind farm with the diesel generator and static var generator (SVG) is used to black start the simulated auxiliary load of a thermal power plant. A field test of the proposed black-start scheme is carried out on an actual wind farm in Jiangsu Province (China). The results of the field test show that wind farms can act as a black-start power supply source for the grid after appropriate technological transformation.


2021 ◽  
Vol 4 (2) ◽  
pp. 33
Author(s):  
Jannatul Mawa Akanto ◽  
Md. Rifat Hazari ◽  
Mohammad Abdul Mannan

According to the grid code specifications, low voltage ride-through (LVRT) is one of the key factors for grid-tied wind farms (WFs). Since fixed-speed wind turbines with squirrel cage induction generators (FSWT-SCIGs) require an adequate quantity of reactive power throughout the transient period, conventional WF consisting of SCIG do not typically have LVRT capabilities that may cause instability in the power system. However, variable-speed wind turbines with doubly fed induction generators (VSWT-DFIGs) have an adequate amount of LVRT enhancement competency, and the active and reactive power transmitted to the grid can also be controlled. Moreover, DFIG is quite expensive because of its partial rating (AC/DC/AC) converter than SCIG. Accordingly, combined installation of both WFs could be an effective solution. Hence, this paper illustrated a new rotor-side converter (RSC) control scheme, which played a significant role in ensuring the LVRT aptitude for a wide range of hybrid WF consisting of both FSWT-SCIGs and VSWT-DFIGs. What is more, the proposed RSC controller of DFIG was configured to deliver an ample quantity of reactive power to the SCIG during the fault state to make the overall system stable. Simulation analyses were performed for both proposed and traditional controllers of RSC of the DFIG in the PSCAD/EMTDC environment to observe the proposed controller response. Overall, the presented control scheme could guarantee the LVRT aptitude of large-scale SCIG.


2013 ◽  
Vol 433-435 ◽  
pp. 1330-1335 ◽  
Author(s):  
Zhen Yu Xu ◽  
Bin Meng ◽  
Jian He ◽  
Shao Hua Jiao

Under the influence of the view that reactive power compensation on-spot, the study on control of reactive power and voltage in wind farms focused on a single wind farm optimal reactive voltage control. China's wind power resources are relatively concentrated and a region often have several or even a dozen wind farms. Wind farm thought as a unit to adjust often leads to irrational reactive power flow. Wind farm groups and collection substations must be thought together as a whole to manage. This paper makes use of collection substations to support area voltage, coordinates reactive power output of the wind farm groups based on the voltage sensitivity and improves the overall grid voltage level of the wind farm groups areas. Simulation results proved that the program can improve the regional power grid voltage level.


Author(s):  
Xu Pei-Zhen ◽  
Lu Yong-Geng ◽  
Cao Xi-Min

Background: Over the past few years, the subsynchronous oscillation (SSO) caused by the grid-connected wind farm had a bad influence on the stable operation of the system and has now become a bottleneck factor restricting the efficient utilization of wind power. How to mitigate and suppress the phenomenon of SSO of wind farms has become the focus of power system research. Methods: This paper first analyzes the SSO of different types of wind turbines, including squirrelcage induction generator based wind turbine (SCIG-WT), permanent magnet synchronous generator- based wind turbine (PMSG-WT), and doubly-fed induction generator based wind turbine (DFIG-WT). Then, the mechanisms of different types of SSO are proposed with the aim to better understand SSO in large-scale wind integrated power systems, and the main analytical methods suitable for studying the SSO of wind farms are summarized. Results: On the basis of results, using additional damping control suppression methods to solve SSO caused by the flexible power transmission devices and the wind turbine converter is recommended. Conclusion: The current development direction of the SSO of large-scale wind farm grid-connected systems is summarized and the current challenges and recommendations for future research and development are discussed.


2013 ◽  
Vol 756-759 ◽  
pp. 4171-4174 ◽  
Author(s):  
Xiao Ming Wang ◽  
Xing Xing Mu

With the Asynchronous wind generators as research object, this paper analyzes the problems of the voltage stability and the generation mechanism of the reactive power compensation during the wind farms connected operation. For paralleling capacitor bank has shown obvious defects, therefore this paper employs dynamic reactive power compensation to improve reactive characteristics of grid-connected wind farms. With the influences of different wind disturbances and grid faults on wind farms, wind farm model is set up and dynamic reactive power compensation system and wind speeds are built in the Matlab/Simulink software, The simulation result shows that they can provide reactive power compensation to ensure the voltage stability of the wind farms. But STATCOM needs less reactive compensation capacity to make sure the voltage and active power approaching steady state before the faults more quickly, Therefore STATCOM is more suitable for wind farms connected dynamic reactive power compensation.


Sign in / Sign up

Export Citation Format

Share Document