STUDY OF THE STATIC CHARACTERISTICS OF THE WORKSPACE AR600E ROBOT

2020 ◽  
Vol 5 (4) ◽  
pp. 6-12
Author(s):  
Evgeniy Shakhmatov ◽  
Vladimir Ilyukhin ◽  
Dmitry Mezentsev

The workspace is one of the most important parameters for evaluating robot flexibility and is important for optimizing robotic configuration, motion planning and control. Firstly, a kinematic model of the manipulator based on its basic structure was put forward. The systems of connection coordinates are established and the direct kinematic solution derived using DH methods. On its basis, the working space of the manipulator analyzed by the Monte Carlo method, based on random probability and software simulation MATLAB for the structural parameters of the robot. A cloud of workspace points has been compiled. Considering the problem of insufficient accuracy of the traditional Monte Carlo method in calculating the working space of the robot, an improved Monte Carlo method using the Beta distribution proposed. 

2019 ◽  
Vol 52 (1-2) ◽  
pp. 116-121 ◽  
Author(s):  
Jian Huang ◽  
Yuanyuan Li ◽  
Bei Jiang ◽  
Le Cao

As an important support for test and control projects, sensor’s performance is directly related to the accuracy of the measurement. To fully analyze the sources of measurement uncertainty for a surface acoustic wave micro-pressure sensor, in this study the Monte Carlo method and Guide to the Expression of Uncertainty in Measurement to evaluate measurement uncertainty of sensors are used, the sensing experiment was conducted and the measurement addition model was established. We determined the source of measurement uncertainty for a surface acoustic wave micro-pressure sensor. The results show that the Monte Carlo method can obtain a more reliable and accurate inclusion interval in the measurement uncertainty evaluation of a surface acoustic wave micro-pressure sensor.


2020 ◽  
Vol 2020 (4) ◽  
pp. 25-32
Author(s):  
Viktor Zheltov ◽  
Viktor Chembaev

The article has considered the calculation of the unified glare rating (UGR) based on the luminance spatial-angular distribution (LSAD). The method of local estimations of the Monte Carlo method is proposed as a method for modeling LSAD. On the basis of LSAD, it becomes possible to evaluate the quality of lighting by many criteria, including the generally accepted UGR. UGR allows preliminary assessment of the level of comfort for performing a visual task in a lighting system. A new method of "pixel-by-pixel" calculation of UGR based on LSAD is proposed.


Author(s):  
V.A. Mironov ◽  
S.A. Peretokin ◽  
K.V. Simonov

The article is a continuation of the software research to perform probabilistic seismic hazard analysis (PSHA) as one of the main stages in engineering seismic surveys. The article provides an overview of modern software for PSHA based on the Monte Carlo method, describes in detail the work of foreign programs OpenQuake Engine and EqHaz. A test calculation of seismic hazard was carried out to compare the functionality of domestic and foreign software.


2019 ◽  
Vol 20 (12) ◽  
pp. 1151-1157 ◽  
Author(s):  
Alla P. Toropova ◽  
Andrey A. Toropov

Prediction of physicochemical and biochemical behavior of peptides is an important and attractive task of the modern natural sciences, since these substances have a key role in life processes. The Monte Carlo technique is a possible way to solve the above task. The Monte Carlo method is a tool with different applications relative to the study of peptides: (i) analysis of the 3D configurations (conformers); (ii) establishment of quantitative structure – property / activity relationships (QSPRs/QSARs); and (iii) development of databases on the biopolymers. Current ideas related to application of the Monte Carlo technique for studying peptides and biopolymers have been discussed in this review.


1999 ◽  
Vol 72 (1) ◽  
pp. 68-72
Author(s):  
M. Yu. Al’es ◽  
A. I. Varnavskii ◽  
S. P. Kopysov

Sign in / Sign up

Export Citation Format

Share Document