scholarly journals Nanocatalysts for Low-Temperature Oxidation of CO: Review

2014 ◽  
Vol 17 (1) ◽  
pp. 17 ◽  
Author(s):  
G.G. Xanthopouloua ◽  
V.A. Novikova ◽  
Yu.A. Knysha ◽  
A.P. Amosova

<p>The oxidation of CO covers a wide range of applications from gas masks, gas sensors, indoor air quality control to hydrogen purification for polymer electrolyte fuel cells. The reaction attracts renewed interest both in fundamental and applied research of catalysis and electrochemistry. Recent developments and trends in catalysis towards the synthesis of nanocatalysts for CO oxidation are discussed in this review. Different modifications made to conventional catalysts synthesis approaches for preparation of nanocatalysts are critically analyzed. Nanocatalysts developed on the basis of noble metals completely convert CO at temperatures below 0 °C. The development of active and stable catalysts without noble metals for low-temperature CO oxidation is a significant challenge. It was found that Co<sub>3</sub>O<sub>4</sub> nanorods can be steadily active for CO oxidation at a temperature as low as –77 °C. High activity of catalysts at low temperatures connected with nanosize particles and high surface area. This review summarized main directions of nanocatalysts development for CO low temperature oxidation.</p>

RSC Advances ◽  
2016 ◽  
Vol 6 (97) ◽  
pp. 94748-94755 ◽  
Author(s):  
Zhong-Pan Hu ◽  
Hui Zhao ◽  
Ze-Min Gao ◽  
Zhong-Yong Yuan

Red mud is activated and employed as the support of Co3O4 catalysts, exhibiting high catalytic activity for low-temperature CO oxidation.


Author(s):  
AJ Dyakonov ◽  
EA Robinson

AbstractThe low-temperature catalytic oxidation of CO has been reviewed, targeting its possible application to cigarette smoke. The treatment of CO in smoke by using a filter-packed catalyst is extremely complicated by the presence of a variety of chemically active gaseous compounds, a particulate phase, the high velocity of pulsing smoke flow, and ambient temperature. The relevant mechanisms of catalysis and the catalyst preparation variables that could help to overcome these problems are considered. Possible contributors to the overall kinetics that must include variety of diffusion processes were briefly discussed. The chemisorption of O2, CO and CO2 on Pd, Pt and Au and on partially reducible supports, surface reactions and oscillations of the CO oxidation rate were analyzed. The effects of the surface structure and electronic properties of the catalyst support, preparation conditions and presence of a second transition metal on the projected CO oxidation activity of the catalysts in smoke are also discussed. The reviewed catalyst preparation approaches can solve the low-temperature catalyst activity problem. However, more work is required to stabilize this activity of an air-exposed catalyst to provide a necessary shelf life for a cigarette. The greatest challenge seems to be a particular phase - exclusive selectivity that would not contradict with the necessary fast diffusion of gases through the catalyst pores.


2010 ◽  
Vol 381 (1-2) ◽  
pp. 169-176 ◽  
Author(s):  
Julián Astudillo ◽  
Gonzalo Águila ◽  
Francisco Díaz ◽  
Sichem Guerrero ◽  
Paulo Araya

Sign in / Sign up

Export Citation Format

Share Document