scholarly journals A Look at Some International Lithium Ion Battery Recycling Initiatives

Author(s):  
A. Mancha

Today the United States is heavily reliant on the lithium-ion battery as most portable devices and electronics run on it. Current innovations are also looking on how to maximize it on the grid and transportation. This paper will look at three sovereign states and their current initiatives on Li-ion battery recycling: US, European Union, and China. The term initiative is used loosely as the information is not permanent in most policies or plans. Li-ion battery recycling initiatives are crucial to look at because used and wasted Li-ion batteries can disrupt public health and Li-ion batteries are expected to be a factor for effective material supply for future battery production especially in transportation, like the Tesla Roadster.

Author(s):  
Lt. Col Pankaj Kushwaha

Abstract: Li-ion battery technology has become very important in recent years as these batteries show great promise as power source. They power most of today’s portable devices and seem to overcome the psychological barriers against the use of such high energy density devices on a larger scale. Lithium-ion batteries are being widely used in military applications for over a decade. These man portable applications include tactical radios, thermal imagers, ECM, ESM, and portable computing. In the next five years, due to the rapid inventions going on in li-ion batteries, the usage of lithium batteries will further expand to heavy-duty platforms, such as military vehicles, boats, shelter applications, aircraft and missiles. The aim of this paper is to review key aspects of Li-ion batteries, the basic science behind their operation, the most relevant components, anodes, cathodes, electrolyte solution as well as important future directions for R&D of advanced Li-ion batteries for demanding use in Indian Armed Forces which are deployed in very harsh conditions across the country. Keywords: Li-ion Battery, NiCd battery


2021 ◽  
Vol 1044 ◽  
pp. 3-14
Author(s):  
Ahmad Jihad ◽  
Affiano Akbar Nur Pratama ◽  
Salsabila Ainun Nisa ◽  
Shofirul Sholikhatun Nisa ◽  
Cornelius Satria Yudha ◽  
...  

Li-ion batteries are one of the most popular energy storage devices widely applied to various kinds of equipment, such as mobile phones, medical and military equipment, etc. Therefore, due to its numerous advantages, especially on the NMC type, there is a predictable yearly increase in Li-ion batteries' demand. However, even though it is rechargeable, Li-ion batteries also have a usage time limit, thereby increasing the amount of waste disposed of in the environment. Therefore, this study aims to determine the optimum conditions and the potential and challenges from the waste Li-ion battery recycling process, which consists of pretreatment, metal extraction, and product preparation. Data were obtained by studying the literature related to Li-ion battery waste's recycling process, which was then compiled into a review. The results showed that the most optimum recycling process of Li-ion batteries consists of metal extraction by a leaching process that utilizes H2SO4 and H2O2 as leaching and reducing agents, respectively. Furthermore, it was proceeding with the manufacturing of a new Li-ion battery.


2021 ◽  
Vol 2089 (1) ◽  
pp. 012017
Author(s):  
Ramu Bhukya ◽  
Praveen Kumar Nalli ◽  
Kalyan Sagar Kadali ◽  
Mahendra Chand Bade

Abstract Now a days, Li-ion batteries are quite possibly the most exceptional battery-powered batteries; these are drawing in much consideration from recent many years. M Whittingham first proposed lithium-ion battery technology in the 1970s, using titanium sulphide for the cathode and lithium metal for the anode. Li-ion batteries are the force to be reckoned with for the advanced electronic upset in this cutting-edge versatile society, solely utilized in cell phones and PC computers. A battery is a Pack of cells organized in an arrangement/equal association so the voltage can be raised to the craving levels. Lithium-ion batteries, which are completely utilised in portable gadgets & electric vehicles, are the driving force behind the digital technological revolution in today’s mobile societies. In order to protect and maintain voltage and current of the battery with in safe limit Battery Management System (BMS) should be used. BMS provides thermal management to the battery, safeguarding it against over and under temperature and also during short circuit conditions. The battery pack is designed with series and parallel connected cells of 3.7v to produce 12v. The charging and releasing levels of the battery pack is indicated by interfacing the Arduino microcontroller. The entire equipment is placed in a fiber glass case (looks like aquarium) in order to protect the battery from external hazards to design an efficient Lithium-ion battery by using Battery Management System (BMS). We give the supply to the battery from solar panel and in the absence of this, from a regular AC supply.


2015 ◽  
Vol 15 (4) ◽  
pp. 301 ◽  
Author(s):  
Y.Y. Mamyrbayeva ◽  
R.E. Beissenov ◽  
M.A. Hobosyan ◽  
S.E. Kumekov ◽  
K.S. Martirosyan

<p>There are technical barriers for penetration market requesting rechargeable lithium-ion battery packs for portable devices that operate in extreme hot and cold environments. Many portable electronics are used in very cold (-40 °C) environments, and many medical devices need batteries that operate at high temperatures. Conventional Li-ion batteries start to suffer as the temperature drops below 0 °C and the internal impedance of the battery  increases. Battery capacity also reduced during the higher/lower temperatures. The present work describes the laboratory made lithium ion battery behaviour features at different operation temperatures. The pouch-type battery was prepared by exploiting LiCoO<sub>2</sub> cathode material synthesized by novel synthetic approach referred as Carbon Combustion Synthesis of Oxides (CCSO). The main goal of this paper focuses on evaluation of the efficiency of positive electrode produced by CCSO method. Performance studies of battery showed that the capacity fade of pouch type battery increases with increase in temperature. The experimental results demonstrate the dramatic effects on cell self-heating upon electrochemical performance. The study involves an extensive analysis of discharge and charge characteristics of battery at each temperature following 30 cycles. After 10 cycles, the battery cycled at RT and 45 °C showed, the capacity fade of 20% and 25% respectively. The discharge capacity for the battery cycled at 25 °C was found to be higher when compared with the battery cycled at 0 °C and 45 °C. The capacity of the battery also decreases when cycling at low temperatures. It was important time to charge the battery was only 2.5 hours to obtain identical nominal capacity under the charging protocol. The decrease capability of battery cycled at high temperature can be explained with secondary active material loss dominating the other losses.</p>


2020 ◽  
Vol 9 (2) ◽  
pp. 151-157
Author(s):  
Snigdha Sharma ◽  
Amrish Kumar Panwar ◽  
Madan Mohan Tripathi

In the present time, the rechargeable lithium-ion battery is being commercialized to meet the sustained market’s demands. To design a more reliable, safe, and efficient Li-ion battery, a 3-D simulation study has been presented in this paper. In this study, a lithium-ion coin-cell is proposed which has LiFePO4 as a positive electrode with a thickness of 1.76 µm, carbon as a negative electrode with a thickness of 2.50 µm and Celgard 2400 polypropylene sheet as a separator between the electrodes with a thickness of 2 µm. The proposed Li-ion battery has been designed, analyzed, and optimized with the help of Multiphysics software. The simulation study has been performed to analyze the electrochemical properties such as cyclic voltammetry (CV) and impedance spectroscopy (EIS). Moreover, the electrical and thermal properties at the microscopic level are investigated and optimized in terms of surface potential distribution, the concentration of electrolyte, open circuit, and surface temperature with respect to time. It has been noticed that the peak voltage, 3.45 V is observed as the temperature distribution on the surface varies from 0 OC to 80 OC at a microscopic scale with different C-rates. The analysis of simulation results indicates a smoother electrode surface with uniform electrical and thermal properties distribution resulting in improved reliability of the battery. The performed simulation and optimization are helpful to achieve control over battery performance and safe usage without any degradation of the environment.©2020. CBIORE-IJRED. All rights reserved.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1074 ◽  
Author(s):  
Yu Miao ◽  
Patrick Hynan ◽  
Annette von Jouanne ◽  
Alexandre Yokochi

Over the past several decades, the number of electric vehicles (EVs) has continued to increase. Projections estimate that worldwide, more than 125 million EVs will be on the road by 2030. At the heart of these advanced vehicles is the lithium-ion (Li-ion) battery which provides the required energy storage. This paper presents and compares key components of Li-ion batteries and describes associated battery management systems, as well as approaches to improve the overall battery efficiency, capacity, and lifespan. Material and thermal characteristics are identified as critical to battery performance. The positive and negative electrode materials, electrolytes and the physical implementation of Li-ion batteries are discussed. In addition, current research on novel high energy density batteries is presented, as well as opportunities to repurpose and recycle the batteries.


2015 ◽  
Vol 3 (1) ◽  
pp. 404-411 ◽  
Author(s):  
Xuan-Wen Gao ◽  
Yuan-Fu Deng ◽  
David Wexler ◽  
Guo-Hua Chen ◽  
Shu-Lei Chou ◽  
...  

Conductive polypyrrole (PPy)-coated LiNi0.5Mn1.5O4(LNMO) composites are applied as cathode materials in Li-ion batteries, and their electrochemical properties are explored at both room and elevated temperature.


RSC Advances ◽  
2014 ◽  
Vol 4 (68) ◽  
pp. 36301-36306 ◽  
Author(s):  
Lijun Fu ◽  
Kepeng Song ◽  
Xifei Li ◽  
Peter A. van Aken ◽  
Chunlei Wang ◽  
...  

The ‘self-matrix’ function of NiSnO3 as an anode in Li-ion batteries has been investigated via ex situ TEM and SAED.


RSC Advances ◽  
2015 ◽  
Vol 5 (7) ◽  
pp. 4747-4753 ◽  
Author(s):  
Manohar Kakunuri ◽  
Sheetal Vennamalla ◽  
Chandra S. Sharma

Resorcinol–formaldehyde (RF) derived carbon xerogel nanoparticles synthesized by inverse emulsification followed by drying and pyrolysis exhibited excellent electrochemical characteristics and thus find potential use as high capacity anode materials for Li ion battery.


Sign in / Sign up

Export Citation Format

Share Document