scholarly journals A New Method for the Synthesis of Bromine-Containing Heterocyclic Compounds for Photovoltaic Polymers

2019 ◽  
pp. 41
Author(s):  
D. Khrustalev ◽  
A. Yedrissov ◽  
Y. Shishlova ◽  
O. Tyagunova ◽  
B. Ilyassov ◽  
...  

With the development and improvement of systems for converting sunlight into electric and thermal energy, more and more work is emerging on the development of the newest and most promising direction in solar energy, namely the creation of solar cells based on photosensitive polymers. Recently the power conversion efficiency of organic photovoltaic (OPV) devices has overcome the barrier of 17%, and thus we can expect a new wave of scientific interest in the development of new, more efficient OPV devices. Unfortunately, during searching for highly efficient chemical structures of OPV polymers, the researchers missed an important point: all photovoltaic polymers consist of aromatic and heteroaromatic «building blocks», which, in turn, are synthesized based on outdated techniques using highly toxic, dangerous for life and environment precursors. The development of «green», environmentally friendly, economically viable methods for the synthesis of photovoltaic polymers and building blocks for their production, will make the energy obtained from OPV truly «green». In this work, we present an alternative, «green» method for synthesizing halogen-containing aromatic and heteroaromatic, expensive building blocks most commonly used in the synthesis of photovoltaic polymers, which can be used to obtain photovoltaic polymers of various structures. We present the original methods for the synthesis of 4,4-dibromo-1,1- biphenyl (1), 4,7-dibromo-2,1,3-benzothiadiazole (2), 2-bromothiophene (3) and 2,5-dibromothiophene (4). All these methods differ from the previously described routes by their simplicity and convenience of their implementation, the absence of corrosive and irritant reagents, good yield and compliance with the principles of «Green Chemistry».


2019 ◽  
Author(s):  
Ming Shang ◽  
Karla S. Feu ◽  
Julien C. Vantourout ◽  
Lisa M. Barton ◽  
Heather L. Osswald ◽  
...  

<div> <div> <div> <p>The union of two powerful transformations, directed C–H activation and decarboxylative cross-coupling, for the enantioselective synthesis of vicinally functionalized alkyl, carbocyclic, and heterocyclic compounds is described. Starting from simple carboxylic acid building blocks, this modular sequence exploits the residual directing group to access more than 50 scaffolds that would be otherwise extremely difficult to prepare. The tactical use of these two transformations accomplishes a formal vicinal difunctionalization of carbon centers in a way that is modular and thus amenable to rapid diversity incorporation. A simplification of routes to known preclinical drug candidates is presented along with the rapid diversification of an antimalarial compound series. </p> </div> </div> </div>



2020 ◽  
Vol 17 (12) ◽  
pp. 897-925 ◽  
Author(s):  
Moustafa A. Gouda ◽  
Ameen Ali Abu-Hashem ◽  
Hoda Abdel Raouf Hussein ◽  
Ahmed S. Aly

This review describes the synthesis and reactions of substituted triazolopyrimidines as building blocks toward polyfunctionalized heterocyclic compounds with pharmacological interest.



2019 ◽  
Vol 16 (7) ◽  
pp. 653-688 ◽  
Author(s):  
Leena Kumari ◽  
Salahuddin ◽  
Avijit Mazumder ◽  
Daman Pandey ◽  
Mohammad Shahar Yar ◽  
...  

Heterocyclic compounds are well known for their different biological activity. The heterocyclic analogs are the building blocks for synthesis of the pharmaceutical active compounds in the organic chemistry. These derivatives show various type of biological activity like anticancer, antiinflammatory, anti-microbial, anti-convulsant, anti-malarial, anti-hypertensive, etc. From the last decade research showed that the quinoline analogs plays a vital role in the development of newer medicinal active compounds for treating various type of disease. Quinoline reported for their antiviral, anticancer, anti-microbial and anti-inflammatory activity. This review will summarize the various synthetic approaches for synthesis of quinoline derivatives and to check their biological activity. Derivatives of quinoline moiety plays very important role in the development of various types of newer drugs and it can be used as lead compounds for future investigation in the field of drug discovery process.



2018 ◽  
Vol 42 (14) ◽  
pp. 11458-11464 ◽  
Author(s):  
Hong Chul Lim ◽  
Jang-Joo Kim ◽  
Jyongsik Jang ◽  
Jong-In Hong

The bulk heterojunction organic photovoltaic (OPV) devices based on 3T : PC71BM (2 wt%, 1 : 1.75 w/w) exhibited a higher power conversion efficiency of 2.58% than DTT-based OPV devices.



2021 ◽  
Author(s):  
Thomas Chaney ◽  
Andrew Levin ◽  
Sebastian Schneider ◽  
Michael F. Toney

Precise control of the complex morphology of organic photovoltaic bulk heterojunction (BHJ) active layers remains an important yet challenging approach for improving power conversion efficiency. Of particular interest are the...



2014 ◽  
Vol 1663 ◽  
Author(s):  
Garima Thakur ◽  
Kovur Prashanthi ◽  
Thomas Thundat

ABSTRACTSelf–assembly of molecular building blocks provides an interesting route to produce well-defined chemical structures. Tailoring the functionalities on the building blocks and controlling the time of self-assembly could control the properties as well as the structure of the resultant patterns. Spontaneous self-assembly of biomolecules can generate bio-interfaces for myriad of potential applications. Here we report self-assembled patterning of human serum albumin (HSA) protein in to ring structures on a polyethylene glycol (PEG) modified gold surface. The structure of the self-assembled protein molecules and kinetics of structure formation entirely revolved around controlling the nucleation of the base layer. The formation of different sizes of ring patterns is attributed to growth conditions of the PEG islands for bio-conjugation. These assemblies might be beneficial in forming structurally ordered architectures of active proteins such as HSA or other globular proteins.



Sign in / Sign up

Export Citation Format

Share Document