scholarly journals Carbon-stock estimation in three types of coal post-mining reclamation at East Kutai Regency, East Kalimantan

2021 ◽  
Vol 10 (2) ◽  
pp. 189
Author(s):  
Fauziah Fauziah ◽  
Abban Putri Fiqa ◽  
Dewi Ayu Lestari ◽  
Sugeng Budiharta
2011 ◽  
Vol 18 (1) ◽  
pp. 179-193 ◽  
Author(s):  
Timothy Charles Hill ◽  
Edmund Ryan ◽  
Mathew Williams

2021 ◽  
Author(s):  
Wildan S. Adwin Pratama ◽  
Pegi Melati ◽  
Dipa U. Nancah ◽  
Filman Firdausman ◽  
Rizky Satriawan ◽  
...  

2018 ◽  
Vol 6 (1) ◽  
pp. 66 ◽  
Author(s):  
Cahyaning Windarni ◽  
Agus Setiawan ◽  
Rusita Rusita

Increasing CO2 in the atmosphere and decreasing amount of forest as absorb CO2are factors which was the underlying repercussion of climate change. One of solutions for decreasing CO2 concentration through the forest vegetation’s development and emendation. Mangrove forest estimated that effectively absorb carbon through photosynthesis. The purpose of the studyis to estimate the stand and litter carbon stock of mangrove forest. The research used line transectmethod. The first line and plot determined randomly then the next lineand plots was sistematically. The observation plots had measurement with amount of 20m x 20m with spacing between plot in line 20 m with total 20 plots. Each plot was measured diameter just  ≥ 5 cm. Each plot made observations litter sub plots with amount of 0,5 m x 0,5 m. Carbon estimation of stand biomass using allometric equations B = 0,1848D2.3624 and litter biomass using total dry weight. Carbon concentration of organic material typically contains around 46% thus multiplying the biomass by 46%. The average biomass of mangrove forests amounted to 431,78 tons/ha. Carbon estimated of mangrove stand was 197,36 ton/ha and litter carbon was 1,25 ton/ha, based on the research total of carbon mangrove forest was198,61 ton/ha. Keywords:carbon above ground,line transect, mangrove forest


2018 ◽  
Vol 6 ◽  
pp. 61-67
Author(s):  
Karishma Gubhaju ◽  
Dipesh Raj Pant ◽  
Ramesh Prasad Sapkota

Forests store significant amount of atmospheric carbon in the form of above and below ground biomass and the amount of carbon stored in forests differs along spatial continuum which provides important information regarding forest quality. This study was carried out to estimate the carbon stock of Shree Rabutar Forest of Gaurishankar Conservation Area, Dolakha, Nepal. In total, 20 circular sampling plots with an area 250 m2 were randomly laid in the study area. Ten tree species were observed in the sampling plots laid in the forest. The higher values of density, frequency, abundance and basal area were observed for Rhododendron arboreum, Alnus nepalensis, Pinus roxburghii and Pinus wallichiana. On the basis of Important Value Index, the dominant tree in the forest was Alnus nepalensis followed by Rhododendron arboreum and Pinus roxburghii. Shannon Index of general diversity of trees in the forest was 0.74 with equal value of Evenness Index, whereas the index of dominance was low (0.22) in the forest. Mean biomass of the forest was 464.01±66.71 tonha-1 contributed by above ground tree biomass (384.44 tonha-1), leaf litter, herbs and grasses biomass (2.69±0.196 tonha-1) and below ground tree biomass (76.88±11.13 tonha-1). Mean carbon stock was 262.77±30.79 tonha-1 including soil carbon stock 44.69±2.25 tonha-1. Individuals of trees with 20-30 cm DBH class were observed in maximum number, which shows that the forest has high potential to sequester carbon over time. Carbon stock estimation and forest management can be one of the potential strategies for climate change mitigation especially through carbon dioxide absorption by the forests.


Soil Science ◽  
2012 ◽  
Vol 177 (1) ◽  
pp. 22-30
Author(s):  
Ishak Yassir ◽  
Bram van Putten ◽  
Peter Buurman
Keyword(s):  

2020 ◽  
Vol 21 (12) ◽  
Author(s):  
Normah Awang Besar ◽  
NURUL SYAKILAH SUHAILI ◽  
JIM LIEW JUN FEI ◽  
FAUZAN WAJDI SHA’ARI ◽  
MUHAMMAD IZZUDDIN IDRIS ◽  
...  

Abstract. Besar NA, Suhaili NS, Fei JLJ, Sha’ari FW, Idris MI, Hatta SH, Kodoh J. 2020. Carbon stock estimation of Sulaman Lake Forest Reserve in Sabah, Malaysia. Biodiversitas 21: 5657-5664. Mangrove forest has a significant role in sequestering carbon gases from the atmosphere but there are lesser literature has been made on it. This research was conducted to quantify the aboveground, belowground and soil carbon stock in Sulaman Lake Forest Reserve, Sabah, Malaysia. Nine transect lines with 125 m length were established and a circle with 7 m radius was set in every 25 m. Forest inventory was done to get the diameter breast height of standing trees and soil sampling with four different depths (0-15 cm, 15-30 cm, 30-50 cm and 50-100 cm) were taken for soil analysis and bulk density. Allometric equation was used to calculate aboveground and belowground biomass then its carbon stock was estimated as 50% from its total biomass. The result shows the total carbon stock in the study area was 441.72 Mg C ha-1, and soil has the highest value of carbon stock (351.98 ± 11.73 Mg C ha-1) followed by aboveground carbon (67.30 ± 20.55 Mg C ha-1) and belowground carbon (22.44 ± 0.17 Mg C ha-1). This study found that soil carbon stock made up almost 80% of the total carbon stock in the mangrove forest. This ecosystem also shows a higher value of carbon stock compared to other locations hence emphasized the importance of prioritizing a mangrove forest in any climate mitigation efforts.


2021 ◽  
Vol 22 (2) ◽  
Author(s):  
Karyati Karyati ◽  
Kusno Yuli Widiati ◽  
Karmini Karmini ◽  
Rachmad Mulyadi

Abstract. Karyati, Widiati KY, Karmini, Mulyadi R. 2021. The allometric relationships for estimating aboveground biomass and carbon stock in an abandoned traditional garden in East Kalimantan, Indonesia. Biodiversitas 22: 751-762. The existence of traditional gardens after abandonment process has a role based on ecological and economic aspects. To estimate the biomass and carbon stock in the abandoned traditional gardens, specific allometric equations are required. The aim of this study was to develop allometric equations to estimate biomass of plant parts (leaf, branch, trunk, and aboveground biomass (AGB)) through tree dimensions variables (diameter at breast height (DBH), total tree height, and tree bole height). The relationships between stem biomass, AGB and tree dimensions were very strong indicated by the relatively high adjusted R2 value. The moderately strong relationships were shown between branch biomass and tree dimensions, meanwhile, the relationship between leaf biomass and tree dimensions was very weak. The specific allometric equations for estimating biomass and carbon stocks that are suitable for tree species and/or forest stands at a particular site are very useful for calculating the carbon stocks and sequestration. The appropriate biomass and carbon stock calculation are needed to determine policies related to global climate change.


Sign in / Sign up

Export Citation Format

Share Document