scholarly journals Carbon stock estimation of Shree Rabutar Forest of Gaurishankar Conservation Area, Dolakha, Nepal

2018 ◽  
Vol 6 ◽  
pp. 61-67
Author(s):  
Karishma Gubhaju ◽  
Dipesh Raj Pant ◽  
Ramesh Prasad Sapkota

Forests store significant amount of atmospheric carbon in the form of above and below ground biomass and the amount of carbon stored in forests differs along spatial continuum which provides important information regarding forest quality. This study was carried out to estimate the carbon stock of Shree Rabutar Forest of Gaurishankar Conservation Area, Dolakha, Nepal. In total, 20 circular sampling plots with an area 250 m2 were randomly laid in the study area. Ten tree species were observed in the sampling plots laid in the forest. The higher values of density, frequency, abundance and basal area were observed for Rhododendron arboreum, Alnus nepalensis, Pinus roxburghii and Pinus wallichiana. On the basis of Important Value Index, the dominant tree in the forest was Alnus nepalensis followed by Rhododendron arboreum and Pinus roxburghii. Shannon Index of general diversity of trees in the forest was 0.74 with equal value of Evenness Index, whereas the index of dominance was low (0.22) in the forest. Mean biomass of the forest was 464.01±66.71 tonha-1 contributed by above ground tree biomass (384.44 tonha-1), leaf litter, herbs and grasses biomass (2.69±0.196 tonha-1) and below ground tree biomass (76.88±11.13 tonha-1). Mean carbon stock was 262.77±30.79 tonha-1 including soil carbon stock 44.69±2.25 tonha-1. Individuals of trees with 20-30 cm DBH class were observed in maximum number, which shows that the forest has high potential to sequester carbon over time. Carbon stock estimation and forest management can be one of the potential strategies for climate change mitigation especially through carbon dioxide absorption by the forests.

2020 ◽  
Vol 14 (1) ◽  
pp. 71
Author(s):  
Budiadi Budiadi

Konservasi karbon merupakan salah satu tindakan penting dalam rehabilitasi pesisir, khususnya pesisir selatan Pulau Jawa dengan keunikan ombak yang besar, salinitas tinggi dan sedimen beragam. Penelitian dilaksanakan untuk menduga simpanan karbon dalam berbagai bagian pada areal pesisir tersebut, yang terdiri dari tapak tergenang (tegakan mangrove 14 tahun jenis Avicennia/AV, Rhizophora/RH dan campuran/MX, lahan sedimen/SD, rumput/GR) dan tapak kering berpasir tegakan Casuarina equisetifolia/CS umur 18 tahun. Tiga sampai sembilan petak ukur dibuat untuk pengamatan dan pengukuran vegetasi, serta pengambilan sampel tanah (kedalaman 0-20, 20-40 dan 40-60 cm), dan pengukuran tegakan. Biomasa pohon diestimasi dengan mengkonvesri diameter batang (DBH) menggunakan persamaan alometrik. Biomasa pohon dirubah menjadi karbon tersimpan menggunakan berat jenis kayu yaitu 0,464 untuk above-ground (AGC), dan 0,39 untuk below-ground (BGC), serta untuk menduga biomasa karbon total (TBC). Karbon organik tanah (COT) dianalisis secara terpisah, dan digabungkan dengan karbon biomasa untuk memperkirakan simpanan karbon dalam ekosistem. Hasil penelitian menunjukkan variasi yang tinggi dari pertumbuhan dan kerapatan pohon, khususnya pada tegakan mangrove, dengan kemampuan regenerasi yang rendah. Tidak ditemukan perbedaan yang nyata dari simpanan karbon pada biomasa antara tegakan mangrove dengan Casuarina. Rerata TBC pada mangrove adalah 46,08 Mg C/ha, sedikit lebih rendah daripada CS (51,50 Mg C/ha). Di bawah tanah (hingga kedalaman 60 cm), tapak tergenang (AV, RH, MX, SD dan GR) secara nyata menyimpan COT lebih besar daripada tapak kering (CS). Kedalaman tanah secara nyata mempengaruhi COT, namun pada tapak tergenang semakin dalam tanah maka COT semakin besar, sedangkan tren sebaliknya pada tapak kering. Perkiraan total karbon tersimpan adalah 248.52 (±87.21) Mg C/ha, dengan terendah pada CS (94.46 Mg C/ha) dan tertinggi pada MX (324.77 Mg C/ha). Rehabilitasi pesisir berpeluang meningkatkan simpanan karbon ekosistem karena adanya adanya biomasa pohon, dibandingkan tapak terbuka yakni SD dan GR. Pada tapak tergenang/tegakan mangrove sebagian besar simpanan karbon berupa COT, dan lebih sedikit ditemukan pada CS. Perbedaan karakteristik simpanan karbon ini memerlukan penanganan atau konservasi yang berbeda, tetapi sama-sama membutuhkan rehabilitasi dan regenerasi buatan yang intensif. Carbon Stock Estimation in the South Coastal Rehabilitation Area of Java IslandAbstractCarbon conservation is one of important actions for coastal rehabilitation, in particular in the south coast of Java Island with its unique characteristics of strong tide, high salinity and diverse substrates. The research aimed to estimate carbon stocks from various carbon pools in the coast rehabilitation area, including wetland sites (14-year-old mangroves of Avicennia/AV, Rhizophora/RH and mix mangrove/MX, mudflat-sediment/SD, grassland/GR) and dry-sandy site of 18-year-old Casuarina equisetifolia/CS. Three to nine plots were established for observing and measuring vegetation, as well as taking soil sample at 0-20 cm, 20-40 cm, 40-60 cm depths. Tree biomass were estimated by converting treestem diameter using allometric equation. The tree biomass were converted into tree carbon using carbon density of 0.464 for aboveground (AGC), and 0.39 for below-ground (BGC), and to estimate total biomass carbon (TBC). Soil organic carbon (SOC) was analyzed separately, and combined with biomass carbon to estimate total carbon stock in the ecosystems. High variation of tree growth and density were found, especially in mangrove stands, with a low level of natural regeneration. No significant difference of carbon stock in biomass between mangroves and Casuarina was observed. Average TBC in mangroves (46.08 Mg C/ha) was slightly lower than in CS (51.50 Mg C/ha). In below ground (up to 60 cm depth), wetland sites (AV, RH, MX, SD and GR) significantly stored more SOC than dry land (CS). Soil depth significantly affected SOC, but in wetland sites deeper soil contained more carbon than upper, while an opposite trend was observed in CS. Estimated total carbon stock in the coast was 248.52 (±87.21) Mg C/ha, with the lowest in CS (94.46 Mg C/ha) and highest in MX (324.77 Mg C/ha). Rehabilitation activities in the coast possibly improve carbon stock in the ecosystems due to tree biomass, compared to open sites of SD and GR. In the wetland or mangroves, most of carbon was observed as SOC, and less in the dry-land site. The different characteristics of carbon storage in the south coast need different conservation techniques, but both sites need intensive rehabilitation work and artificial regeneration.


Author(s):  
Fitria Yuliasmara ◽  
Aris Wibawa ◽  
Adi Prawoto

Indonesia has 1.5 million hectare of cocoa plantation in 2008. which hasstrategic position in carbon dioxide absorption to decrease global warming. Biomass approach method in plants carbon stock estimation specific for cocoa is still not available. The aim of this research is to determine carbon stock in 1—30 years ages of cocoa plants and to measure carbon stock in various cocoa planting systems using specific allometric formula of carbon stock estimation. Regression model on plant biomass estimation was estimated based on height, diameter, and their combination. Carbon stock estimation in different ages and plan tation system of cocoa was conducted by randomized completely block design with 3 replications. The result showed that model Y:áDâ as the best allometric formula, where Y is plant biomass, D is diameter at the breast hight, â is a constant with a value of 0.1208 and á was a constant of 1.98. Increasing of carbon stock in cocoa plantations was proportional to the ages of the plants according to the polinomial equation Y=0.0518X2+2.8976X–4.524. Agroforestry system increased carbon stock in cocoa plantation. Cocoa-Paraserianthes falcataria plantation system produce highest of carbon stock in 7 years. Key words : Carbon stock, allometric, cocoa, ages of plant, planting system.


2021 ◽  
Vol 10 (1) ◽  
pp. 39-47
Author(s):  
Septiyani Kusuma Dewi ◽  
Wilis Ari Setyati ◽  
Ita Riniatsih

Lamun memiliki kemampuan menyimpan karbon di dalam biomassanya. Penelitian ini bertujuan untuk mengetahui nilai estimasi simpanan karbon dalam biomassa pada vegetasi lamun di Pulau Kemujan serta Pulau Bengkoang, Taman Nasional Karimunjawa. Pengambilan data menggunakan metode purposive sampling dan metode Seagrass Watch dengan mempertimbangkan kondisi lamun di lokasi tersebut. Pengukuran estimasi karbon dilaksanakan di Laboratorium Ilmu dan Nutrisi Pakan FPP Undip menggunakan metode Loss on Ignition dengan prinsip pengabuan. Jenis lamun yang ditemukan di Pulau Kemujan yaitu Enhalus acoroides, Thalassia hemprichii, dan Cymodocea serrulata, dan pada Pulau Bengkoang ditemukan lamun jenis Thalassia hemprichii, Cymodocea rotundata, Halophila ovalis, dan Enhalus acoroides. Nilai biomassa bawah substrat dan atas substrat pada Stasiun I Pulau Kemujan (3104,5 gbk/m2 dan 1868 gbk/m2) menunjukkan nilai yang lebih besar dibandingkan nilai biomassa bawah substrat dan atas substrat pada Stasiun II Pulau Bengkoang (714,25 gbk/m2 dan 534,25 gbk/m2). Nilai estimasi simpanan karbon pada Stasiun I yaitu 138,47 – 1533,28 gC/m2 dan pada Stasiun II yaitu 17,02– 498,31 gC/m2. Mayoritas nilai karbon lebih tinggi pada jaringan lamun bawah substrat.  Nilai estimasi simpanan karbon sedimen pada Stasiun I yaitu 52,60–339,81 gC/m2 dan 86,85–1329,08 gC/m2 pada Stasiun II. Penelitian ini dapat memberikan informasi mengenai fungsi lain ekosistem lamun yaitu sebagai penyerap karbon sehingga dapat dijadikan edukasi kepada masyarakat umum untuk melestarikan ekosistem lamun sebagai ekosistem yang dapat berperan penting dalam mengatasi masalah emisi gas rumah kaca dan pemanasan global. Seagrass have ability to store carbon mass in their biomass. The aim of this research is to find out the value of carbon stock on seagrass biomass in Kemujan Island and Bengkoang Island seagrass vegetation. The research was retrieval in purposive sampling method and collected seagrass vegetation data by using Seagrass Watch. Measurement of carbon stock estimation held  in INP FPP Undip Laboratory by using Loss on Ignition method. The type of seagrass found in Kemujan Island were Enhalus acoroides, Thalassia hemprichii, and Cymodocea serrulata, meanwhile in Bengkoang Island there were found Thalassia hemprichii, Cymodocea rotundata, Halophila ovalis, and Enhalus acoroides. The value of below ground and above ground biomass in Station I Kemujan Island (3104,5 gbk/m2 dan 1868 gbk/m2) is higher than the value of below ground and above ground biomass in Station II Bengkoang Island (714,25 gbk/m2 and 534,25 gbk/m2). Carbon stock estimation value in Station I is 138,47–1533,28 gC/m2  and 17,02–498,31 gC/m2 in Station II. Most of carbon stock value is higher in below ground seagrass tissue. The value of carbon stock estimation of sediment in Station I is 52,60–339,81 gC/m2 and 86,85–1329,08 gC/m2 in Station II. The research gives information about another function of seagrass, as carbon absorber and can be as education for public to conserve seagrass ecosystem and has important role in resolving greenhouse gas emission and global warming.


2021 ◽  
Vol 249 ◽  
pp. 03011
Author(s):  
Annas Dwitri Malik ◽  
Maulida Isfahani Nurillah ◽  
Parikesit ◽  
Susanti Withaningsih ◽  
Ratna Wingit

Alternatives of vegetations to store carbon need to be encouraged considering that forests are threatened by widespread destructions. One such vegetation is grasslands which have the potential for carbon storage and to reduce CO2 concentration in the atmosphere. At present, many enterprises have designed grasslands for many purposes. Grasslands at Cikalong Wetan and Little Farmers, West Bandung Regency were established under different pattern of plantation stands. The purpose of this research was to study the potential of carbon stock in grassland vegetation at these locations. Based on RaCSA method, the tree biomass was determined by nondestructive collection of density and basal area of trees, then calculated by an allometric equation. The ground cover biomass was determined by destructive collection of grass and roots. Total measured biomass was multiplied by 46% to obtain carbon storage. Based on the results, the potential of carbon stock in Little Farmers grassland (159,540 ton ha-1) is higher than in Cikalong Wetan (14,482 ton ha-1). Carbon stored in tree biomass gives the highest contribution to overall carbon stock potential in Little Farmers (94.84%) while carbon stored in below-ground understorey biomass gives the highest contribution in Cikalong Wetan (52.13 %). Different management of grasslands and pattern of plantation stands resulting a different contribution of carbon stock in every carbon pool. In order to maintain the carbon sequestration potentials of these locations, an agroforestry management such as agri-silviculture need to be encouraged. This study gives a comparison of the carbon sequestration potentials between two man-made grassland ecosystems. For many enterprises this study will aid in a management planning of man-made grassland in terms of ecosystem services, that is carbon sequestration.


2012 ◽  
Vol 46 (2) ◽  
pp. 187-192 ◽  
Author(s):  
Vanna SAMRETH ◽  
Kimsun CHHENG ◽  
Yukako MONDA ◽  
Yoshiyuki KIYONO ◽  
Jumpei TORIYAMA ◽  
...  

2019 ◽  
Vol 42 (3) ◽  
pp. 295-298
Author(s):  
R.K. Verma ◽  
◽  
Dushyant Kumar ◽  
Shilpa . ◽  
◽  
...  

A study was conducted to estimate the biomass and soil carbon stock in various sites of Pinus roxburghii Sarg. (Chir pine) and Quercus leucotrichophora A. Camus (Ban oak) forests of district Shimla, Himachal Pradesh during the year 2015-2016. In case of chir pine forests, the amount of carbon stock in Guma site for above ground, below ground, under storey and litter was 80.05, 16.01, 3.24 and 1.55 tC/ha, respectively. Whereas, values of carbon stock at Dhami site were 192.92, 38.58, 1.71 and 1.57 tC/ha, respectively. The biomass as well as the carbon stock was higher at Dhami site than Guma site. The soil organic carbon stock (tC/ha) at 10-15 cm, 15-30 cm and 30-45 cm was 22.45, 19.99 and 12.36, respectively at Guma site. Whereas, these values at different depths were 23.23, 20.17 and 15.59 tC/ha, respectively for Dhami site. The value of total soil carbon stock was more (58.98 tC/ha) at Dhami site than Guma site (54.80 tC/ha) upto 45cm depth. In case of Ban oak forests, the amount of carbon stock in Taradevi site for above ground, below ground, under storey and litter was 151.27, 37.82, 3.04 and 1.52 tC/ha, respectively. Whereas, values of carbon stock at Koti site were 74.25, 18.56, 1.24 and 1.26 tC/ha, respectively. Total biomass as well as the carbon stock was higher at Taradevi site than Koti site. The soil organic carbon stock (tC/ha) at 10-15 cm, 15-30 cm and 30-45 cm was 42.07, 29.70 and 14.78, respectively at Tardevi site. Whereas, these values for three depths were 36.60 , 27.72 and 18.72 tC/ha, respectively for Koti site. The value of total soil carbon stock was more at Tardevi site (86.55 tC/ha) than Koti site (83.04 tC/ha).


2017 ◽  
Vol 5 (1) ◽  
pp. 1-8
Author(s):  
Sushma Tripathi ◽  
Chandra Bahadur Thapa ◽  
Amrit Sharma

Forests are considered as both the source and sinks of carbon. Different types of forests have different carbon stock. Nepal's midhills community forests have high potentiality to sequester carbon. This paper analyzes the biomass carbon stock in Schima-Castanopsis forest of Jaisikuna community forests of Kaski district, Nepal. Forest area was divided into two blocks and 18 sample plots (9 in each block) were laid randomly. Diameter at Breast Height (DBH) and height of trees (DBH≥5cm) were measured using the DBH tape and clinometer. Leaflitter, herbs, grasses and seedling were collected from 1*1m2 plot and fresh weight was taken. Biomass of tree was calculated and below ground biomass is assumed 15% of above ground tree biomass. For calculating carbon stock, biomass is multiplied by default value 0.47. The above ground tree biomass (AGTB) carbon of chilaune, katus and other species was found 19.56 t/ha, 18.66 t/ha and 3.59 t/ha respectively. The AGTB of chilaune dominated, katus dominated and whole forest was found 43.78 t/ha, 39.83 t/ha and 41.81 t/ ha respectively. LHG carbon was found 2.73 t/ha. Below ground biomass carbon at whole forest was found 6.27 t/ha respectively. Total biomass and carbon at forest was found 108.09 t/ha and 50.80 t/ ha respectively. Difference in biomass and carbon content at chilaune dominated block and katus dominated block was found insignificant. Carbon estimation at forest of different elevation, aspect and location are recommended for further research.


1970 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohan P. Devkota ◽  
Gerhard Glatzel

Effects of infection by the mistletoe Scurrula elata (Edgew.) Danser, on wood properties of its common host Rhododendron arboreum Sm., were studied in the Annapurna Conservation Area of Central Nepal Himalaya. Heavy infection by mistletoes invariably causes decline of the host. Infested branches show inhibition of growth, defoliation and eventual death of branch parts distal to the site of infection. Anatomical properties of wood were compared in samples of branches proximal to the infection and in uninfected branches. The hypothesis that infection induces changes in basic wood anatomy could not be proven. Vessel density, vessel area, percentage lumen area and mean vessel diameter of the wood of infested and uninfected branches did not show any significant differences. The studied anatomical parameters were not correlated to the diameter of the host branch. These results show that infection by S. elata did not cause any changes in basic wood anatomy of its host R. arboreum. It appears that the studied anatomical parameters of Rhododendron wood are fairly stable and are not changed by stress due to infection by mistletoes. The damage to the host distal to the infected area most likely results from an insufficiency of total conductive area to supply both mistletoe and host. Unfortunately we could not determine annual conductive area increment, because R arboreum does not develop usable annual tree rings in the climate of the study area. Key words: Himalayas, mistletoe. Rhododendron arboreum, Scurrula elata, water stress, wood anatomy. Ecoprint Vol.11(1) 2004.


2011 ◽  
Vol 18 (1) ◽  
pp. 179-193 ◽  
Author(s):  
Timothy Charles Hill ◽  
Edmund Ryan ◽  
Mathew Williams

Sign in / Sign up

Export Citation Format

Share Document