scholarly journals Prof. Transient receptor potential vanilloid 4 promotes the growth of non-small cell lung cancer by regulating Foxp3

Author(s):  
Jiang-tao Pu ◽  
Tao Zhang ◽  
Kai-ming He ◽  
Deng-guo Zhang ◽  
Zhang-yu Teng ◽  
...  

Objective(s): Transient receptor potential vanilloid 4 (TRPV4) participates in malignant tumor. However, the role of TRPV4 in non-small cell lung cancer (NSCLC) remains unclear. In this study, we demonstrated TRPV4 was upregulated in NSCLC tissues and NSCLC cell lines. Materials and Methods: TRPV4 level in the NSCLC patients and cell lines were detected, and its function was studied both in vivo and vitro. Results: The level of TRPV4 showed a positive correlation with tumor size of NSCLC patients. Activation TRPV4 by agonist GSK1016790A promoted cell proliferation and decreased apoptosis in A549 cells, and these effects were enhanced when the cells have overexpressed TRPV4. Moreover, GSK1016790A induced inhibitory effects on apoptosis of A549 cells was impaired when GSK1016790A used together with TRPV4 selective antagonist HC-067047, or impaired when the cells have already downregulated TRPV4 expression by TRPV4 siRNA. In vivo study, pharmacological inhibition of TRPV4 prevented A549 cells transplanted tumor growth. It was showed Foxp3 level was significantly increased in the NSCLC tissues, and showed a positive correlation with the level of TRPV4. Deactivation of TRPV4 using TRPV4 siRNA or HC-067047 significantly reduced expression of Foxp3 in GSK1016790A treated NSCLC cells. Moreover, downregulation Foxp3 by transfection of Foxp3 siRNA significantly impaired TRPV4 induced NSCLC cells proliferations in vitro. Conclusions: Antitumor effects caused by TRPV4 inhibition in NSCLC might be attributed to the suppression of Foxp3 which induced subsequent cell apoptosis. Thus, pharmacological inhibition of TRPV4 may be a promising option for NSCLC treatment.  

2020 ◽  
Author(s):  
Haoqiang Lai ◽  
Chang Liu ◽  
Wenwei Lin ◽  
tf Chen ◽  
An Hong

Abstract Background Lung cancer possesses high mortality rate and tolerances to multiple chemotherapeutics. Natural Borneol (NB) is a monoterpenoid compound that found to facilitate the bioavailability of drugs. In this study, we attempted to investigate effects of NB on the chemosensitivity in A549 cells and try to elucidate its therapeutic target. Methods The effects of NB on chemosensitivity in A549 cells was examined by MTT assay. The mechanism studies were evaluated by flow cytometry and western blotting assay. Surface plasmon resonance (SPR) and LC-MS combined analysis (MS-SPRi) was performed to elucidate the candidate target of NB contributes to this synergism. The chemosensitizing capacity of NB in vivo was conducted in nude mice bearing A549 tumors. Results NB pretreatment sensitizes A549 cells to low dosage of DOX, leading to a 15.7% to 41.5% increase in apoptosis, which is corelated with ERK and AKT inactivation but activation of phosphor-p38MAPK, -JNK and p53. Furthermore, this synergism depends on reactive oxygen species (ROS) generation. The MS-SPRi analysis reveals that the transient receptor potential melastatin-8 (TRPM8) is the interaction target of NB in potentiating DOX killing potency. Genetically knock down of TRPM8 significantly suppress the chemosensitizing effects of NB with the involvement of inhibiting ROS generation through restraining calcium mobilization. Moreover, pretreatment of NB synergistically enhanced the anticancer effects of DOX to delay tumor progression in vivo. Conclusions These results suggest that TRPM8 may be a valid therapeutic target in the potential application of NB serves as a chemosensitizer for lung cancer treatment.


2014 ◽  
Vol 306 (4) ◽  
pp. H574-H584 ◽  
Author(s):  
Jack Rubinstein ◽  
Valerie M. Lasko ◽  
Sheryl E. Koch ◽  
Vivek P. Singh ◽  
Vinicius Carreira ◽  
...  

Transient receptor potential cation channels have been implicated in the regulation of cardiovascular function, but only recently has our laboratory described the vanilloid-2 subtype (TRPV2) in the cardiomyocyte, though its exact mechanism of action has not yet been established. This study tests the hypothesis that TRPV2 plays an important role in regulating myocyte contractility under physiological conditions. Therefore, we measured cardiac and vascular function in wild-type and TRPV2−/− mice in vitro and in vivo and found that TRPV2 deletion resulted in a decrease in basal systolic and diastolic function without affecting loading conditions or vascular tone. TRPV2 stimulation with probenecid, a relatively selective TRPV2 agonist, caused an increase in both inotropy and lusitropy in wild-type mice that was blunted in TRPV2−/− mice. We examined the mechanism of TRPV2 inotropy/lusitropy in isolated myocytes and found that it modulates Ca2+ transients and sarcoplasmic reticulum Ca2+ loading. We show that the activity of this channel is necessary for normal cardiac function and that there is increased contractility in response to agonism of TRPV2 with probenecid.


2018 ◽  
Vol 01 (03) ◽  
pp. 213-218 ◽  
Author(s):  
Linwei Lu ◽  
Zhengxiao Zhao ◽  
Lumei Liu ◽  
Weiyi Gong ◽  
Jingcheng Dong

Objective: The objective of this study is to preliminarily evaluate the efficacy of the combination of baicalein and docetaxel on non-small cell lung cancer (NSCLC) in vivo. Methods: The subcutaneous model was established by inoculation of A549 cells, and then these tumor-bearing mice were randomly assigned to eight groups to receive normal saline (NS) as control, baicalein alone, Taxotere[Formula: see text] (docetaxel injection) alone or the combination of baicalein and Taxotere[Formula: see text]. The effect of the combination treatment was evaluated by [Formula: see text] value. Tumors were harvested for TUNEL and CD31 immunohistochemical staining and important organs for H&E staining. Results: Baicalein 50[Formula: see text]mg/kg plus docetaxel 10[Formula: see text]mg/kg significantly reduced tumor weight and inhibited the growth rate of tumor, displaying the additive effect indicated by the [Formula: see text] value. Increased apoptosis and decreased tumor angiogenesis also provided pathological evidence. Additionally, baicalein 50[Formula: see text]mg/kg plus docetaxel 10[Formula: see text]mg/kg did not increase toxicity in lung, liver and kidney. Conclusion: Baicalein 50[Formula: see text]mg/kg plus docetaxel 10[Formula: see text]mg/kg additively inhibits the growth of NSCLC in vivo, and the mechanism underlying remains to be discovered.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Jack Rubinstein ◽  
Vivek P Singh ◽  
Valerie M Lasko ◽  
Sheryl E Koch ◽  
Evangelia Kranias ◽  
...  

Background: TRPV2 is a Ca2+ channel that we have recently discovered in cardiomyocytes. The absence of this channel negatively impacts baseline contractility while stimulation results in a positive inotropic response. What remains to be established is the mechanism of this receptor and its role, if any, in the development of hypertrophy. Methods and Results: We obtained isolated cardiomyocytes from wild type (WT) and TRPV2-/- (KO) mice and found that the sarcoplasmic reticulum Ca2+ content and Ca2+ transients were reduced along with fractional shortening in the KO cardiomyocytes (figure, panels A, B, C). In vivo echocardiography confirmed a decrease in ejection fraction in KO mice in comparison to the WT counterparts (panel D). The relevance of these findings was examined in 6 WT and 5 KO mice subjected to transverse aortic constriction (TAC). These mice were followed by echocardiography weekly for a total of 8 weeks post TAC. At the conclusion, the hearts were obtained for histological and molecular analyses. We demonstrated that the KO mice developed less LV hypertrophy in comparison to WT (via echocardiography and by heart weight/body weight ratios) (figure, panels E and F). Importantly, there was a 5 fold increase in TRPV2 expression assessed by PCR in TAC WT hearts, compared to WT not subjected to TAC (0.72±0.10 vs. 0.13±0.04; p<0.01). This suggests a role for TRPV2 not only in contractility, but also in the development of hypertrophy. Conclusions: We have discovered a novel cardiac channel that alters Ca2+ cycling and is capable of modulating cardiomyocyte contractility and hypertrophy, which could lead to novel therapeutic options in heart failure and hypertrophy.


2020 ◽  
Author(s):  
Damiano Scopetti ◽  
Danilo Piobbico ◽  
Cinzia Brunacci ◽  
Stefania Pieroni ◽  
Guido Bellezza ◽  
...  

Abstract Background Non-Small Cell Lung Cancer accounts for 80–85% of all forms of Lung Cancer as leading cause of cancer-related death in human. Despite remarkable advances in the diagnosis and therapy of Lung Cancer, no significant improvements have thus far been achieved in terms of patients’ prognosis. Here, we investigated the role of INSL4 – a member of the relaxin family –in NSCLC.Methods We permanently overexpressed INSL4 in NSCLC cells in vitro to analyse the growth rate and the tumourigenic features. We further investigated the signalling pathways engaged in INSL4 overexpressing cells and the tumour growth ability by studying the tumour development in a patient derived tumour xenograft mouse model. Results We found a cell growth promoting effect by INSL4 overexpression in vitro in H1299 cells and in vivo in NOD/SCID mice. Surprisingly, in NSCLC-A549 cells, stable INSL4 overexpression has not showed similar effect, despite has an INSL4-mRNA expressed up to 22.000 fold more respect H1299. The INSL4-mRNA analysis of eight different NSCLC-derived cell lines, has revealed a great discrepancy between the amount of INSL4-mRNA and specific protein. Notably, similar result has been observed in studied NSCLC patients analysing and comparing INSL4 mRNA and protein expression. However, in a cohort of NSCLC patients, we found a significant inverse correlation between INSL4 expression and Overall Survival.Conclusions By combining the results from the in vitro and in vivo models and in silico analysis in patients whose NSCLCs adenocarcinoma spontaneously expressed high levels of INSL4 our results suggest that epigenetic modifications that affect INSL4 does not allow to assess precision therapy in selected patients without consider protein INSL4 amount.


Author(s):  
Xiaoxia Zhao ◽  
Ning Zhang ◽  
Yingying Huang ◽  
Xiaojing Dou ◽  
Xiaolin Peng ◽  
...  

Lansoprazole (Lpz) is an FDA-approved proton pump inhibitor (PPI) drug for the therapy of acid-related diseases. Aiming to explore the new application of old drugs, we recently investigated the antitumor effect of Lpz. We demonstrated that the PPI Lpz played a tumor suppressive role in non-small cell lung cancer (NSCLC) A549 cells. Mechanistically, Lpz induced apoptosis and G0/G1 cell cycle arrest by inhibiting the activation of signal transducer and activator of transcription (Stat) 3 and the phosphoinositide 3-kinase (PI3K)/Akt and Raf/ERK pathways. In addition, Lpz inhibited autophagy by blocking the fusion of autophagosomes with lysosomes. Furthermore, Lpz in combination with gefitinib (Gef) showed a synergistic antitumor effect on A549 cells, with enhanced G0/G1 cell cycle arrest and apoptosis. The combination inhibited Stat3 phosphorylation, PI3K/Akt and Raf/ERK signaling, affecting cell cycle-related proteins such as p-Rb, cyclin D1 and p27, as well as apoptotic proteins such as Bax, Bcl-2, caspase-3, and poly (ADP-ribose) polymerase (PARP). In vivo, coadministration with Lpz and Gef significantly attenuated the growth of A549 nude mouse xenograft models. These findings suggest that Lpz might be applied in combination with Gef for NSCLC therapy, but further evidence is required.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 954
Author(s):  
Ye-Ram Kim ◽  
Ah-Reum Han ◽  
Jin-Baek Kim ◽  
Chan-Hun Jung

The use of ionizing radiation (IR) during radiotherapy can induce malignant effects, such as metastasis, which contribute to poor prognoses in lung cancer patients. Here, we explored the ability of dendrobine, a plant-derived alkaloid from Dendrobium nobile, to improve the efficacy of radiotherapy in non-small cell lung cancer (NSCLC). We employed Western blotting, quantitative real-time (qRT)-PCR, transwell migration assays, and wound-healing assays to determine the effects of dendrobine on the migration and invasion of A549 lung cancer cells in vitro. Dendrobine (5 mm) inhibited γ-irradiation-induced migration and invasion of A549 cells by suppressing sulfatase2 (SULF2) expression, thus inhibiting IR-induced signaling. To investigate the inhibitory effects of dendrobine in vivo, we established a mouse model of IR-induced metastasis by injecting BALB/c nude mice with γ-irradiated A549 cells via the tail vein. As expected, injection with γ-irradiated cells increased the number of pulmonary metastatic nodules in mice (0 Gy/DPBS, 9.8 ± 1.77; 2 Gy/DPBS, 20.87 ± 1.42), which was significantly reduced with dendrobine treatment (2 Gy/Dendrobine, 10.87 ± 0.71), by prevention of IR-induced signaling. Together, these findings demonstrate that dendrobine exerts inhibitory effects against γ-irradiation-induced invasion and metastasis in NSCLC cells in vitro and in vivo at non cytotoxic concentrations. Thus, dendrobine could serve as a therapeutic enhancer to overcome the malignant effects of radiation therapy in patients with NSCLC.


2021 ◽  
Vol 9 ◽  
Author(s):  
Danruo Fang ◽  
Hansong Jin ◽  
Xiulin Huang ◽  
Yongxin Shi ◽  
Zeyu Liu ◽  
...  

Non-small cell lung cancer (NSCLC) is considered to be a principal cause of cancer death across the world, and nanomedicine has provided promising alternatives for the treatment of NSCLC in recent years. Photothermal therapy (PTT) and chemodynamic therapy (CDT) have represented novel therapeutic modalities for cancer treatment with excellent performance. The purpose of this research was to evaluate the effects of PPy@Fe3O4 nanoparticles (NPs) on inhibiting growth and metastasis of NSCLC by combination of PTT and CDT. In this study, we synthesized PPy@Fe3O4 NPs through a very facile electrostatic absorption method. And we detected reactive oxygen species production, cell apoptosis, migration and protein expression in different groups of A549 cells and established xenograft models to evaluate the effects of PPy@Fe3O4 NPs for inhibiting the growth of NSCLC. The results showed that the PPy@Fe3O4 NPs had negligible cytotoxicity and could efficiently inhibit the cell growth and metastasis of NSCLC in vitro. In addition, the PPy@Fe3O4 NPs decreased tumor volume and growth in vivo and endowed their excellent MRI capability of observing the location and size of tumor. To sum up, our study displayed that the PPy@Fe3O4 NPs had significant synergistic effects of PTT and CDT, and had good biocompatibility and safety in vivo and in vitro. The PPy@Fe3O4 NPs may be an effective drug platform for the treatment of NSCLC.


Sign in / Sign up

Export Citation Format

Share Document