Study of the Influence of the Add оf Micropores on Filtering Characteristics of High Porous Structures

2020 ◽  
Vol 24 (9) ◽  
pp. 39-43
Author(s):  
O.V. Soloveva ◽  
S.A. Solovev ◽  
R.R. Yafizov

In this work we carried out a numerical study of the gas flow through an open cell foam material with solid-state partitions and partitions containing micropores. The effect of a geometry change by adding micropores on the pressure drop, particle deposition efficiency, and filter quality factor is estimated. The results showed that the addition of micropores positively affects the filtering and hydrodynamic properties of the highly porous material for the same macroporosity of the medium, and for the case of total porosity of the medium, the material with micropores allows one to obtain an increased value of the deposition efficiency and filter quality factor for small particles.

Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 47
Author(s):  
Fubing Bao ◽  
Hanbo Hao ◽  
Zhaoqin Yin ◽  
Chengxu Tu

Nanoparticle deposition in microchannel devices inducing contaminant clogging is a serious barrier to the application of micro-electro-mechanical systems (MEMS). For micro-scale gas flow fields with a high Knudsen number (Kn) in the microchannel, gas rarefaction and velocity slip cannot be ignored. Furthermore, the mechanism of nanoparticle transport and deposition in the microchannel is extremely complex. In this study, the compressible gas model and a second-order slip boundary condition have been applied to the Burnett equations to solve the flow field issue in a microchannel. Drag, Brownian, and thermophoretic forces are concerned in the motion equations of particles. A series of numerical simulations for various particle sizes, flow rates, and temperature gradients have been performed. Some important features such as reasons, efficiencies, and locations of particle deposition have been explored. The results indicate that the particle deposition efficiency varies more or less under the actions of forces such as Brownian force, thermophoretic force, and drag force. Nevertheless, different forces lead to different particle motions and deposition processes. Brownian or thermophoretic force causes particles to move closer to the wall or further away from it. The drag force influence of slip boundary conditions and gas rarefaction changes the particles’ residential time in the channel. In order to find a way to decrease particle deposition on the microchannel surface, the deposition locations of different sizes of particles have been analyzed in detail under the action of thermophoretic force.


Author(s):  
Junji Nagao ◽  
Shigeru Matsuo ◽  
Mamun Mohammad ◽  
Toshiaki Setoguchi ◽  
Heuy Dong Kim

Author(s):  
E. Kapusuz ◽  
B. Ekici

An experimental and numerical study is carried out to evaluate the significance of gas leakage for a non-lube optically accessible internal combustion engine and to obtain estimation for the gas flow out of the combustion chamber at each engine cycle and its effect on the in-cylinder component states during optical engine’s operation. Attention is paid to blow-by and circumferential flow through the gaps between the piston rings and the liner. Optical engines are typically operated without lubrication to avoid window fouling and generation of fluorescence by oil particles that interfere with laser diagnostic signals, in view of this circumstance significant blow-by is expected in optical engines due to lack of “wet-seal” on the cylinder walls which permits circumferential flow of gases through the piston ring pack region resulting in increased blow-by. Semi analytical model estimating the mass loss rate is incorporated into zero dimensional thermodynamic IC engine model which simulates in-cylinder processes. Predicted results are compared for leaking and non-leaking engine simulations.


Author(s):  
Xiaoyu Wang ◽  
Jun Yao ◽  
Liang Gong ◽  
Hai Sun ◽  
Yongfei Yang ◽  
...  

The transport and deposition of particulate materials through fractures is widely involved in environmental engineering and resource development engineering. A 3D Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) coupling method was used to investigate the particle and fluid flow. The Gauss Model was applied to construct the rough surfaces. First, the numerical results were compared with the previous results and reasonable agreements were obtained. Second, the results indicated a novel flow pattern of particles in rough fractures. Then, a comprehensive particle sedimentary analysis indicated that the deposition distance of particles was inversely proportional to the particle size and density ratio. In addition, the particle deposition rates were increased by the mean roughness and there was an uneven sediment distribution impacted by roughness. Reasons for this uneven sediment distribution were analyzed in detail. Moreover, the bridge plugs of particles considering the closure of fractures were simulated as well. A part of particulate materials would be filtered at the inlet due to size effect and the transport distance of entered particles decreased significantly when the particle was large. A critical particle radius (R < 0.27 mm) that can flow through closure fracture in this work was found. This work can provide a clear insight into the migration and deposition characteristics of particles in the rough fractures underground.


2020 ◽  
Vol 364 ◽  
pp. 572-583
Author(s):  
Jiwei Guo ◽  
Zhanxiu Chen ◽  
Boxiong Shen ◽  
Jin Wang ◽  
Li Yang

Sign in / Sign up

Export Citation Format

Share Document