thermophoretic force
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 5)

H-INDEX

12
(FIVE YEARS 0)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shahin Akbari ◽  
Nima Hasanvand ◽  
Sadegh Sadeghi ◽  
Mehdi Bidabadi ◽  
Qingang Xiong

Purpose The widespread usage of magnetic nanoparticles (MNPs) requires their efficient synthesis during combustion process. This study aims to present a mathematical model for the oxidation of MNPs in a counter-flow non-premixed combustion system to produce MNPs, where the key sub-processes during the oxidation reaction are involved. Design/methodology/approach To accurately describe structure of flame and determine distributions of temperature and mass fractions of both reactants and products, equations of energy and mass conservations were solved based on the prevailing assumptions that three regions, i.e. preheating, reaction and oxidizer zones exist. Findings The numerical simulation was first validated against experimental data and characteristics of the combustion process are discussed. Eventually, the influences of crucial parameters such as reactant Lewis numbers, strain rate ratio, particle size, inert gas and thermophoretic force on structure of flame and combustion behavior were examined. The results show that maximum flame temperature can achieve 2,205 K. Replacing nitrogen with argon and helium as carrier gases can increase flame temperature by about 27% and 34%, respectively. Additionally, maximum absolute thermophoretic force was found at approximately 9.6 × 10–8 N. Originality/value To the best of authors’ knowledge, this is the first time to numerically model the preparation of MNPs in a counter-flow non-premixed combustion configuration, which can guide large-scale experimental work in a more effective way.



Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 561
Author(s):  
Kyaw Arkar ◽  
Mikhail M. Vasiliev ◽  
Oleg F. Petrov ◽  
Evgenii A. Kononov ◽  
Fedor M. Trukhachev

Experimental data on the active Brownian motion of single particles in the RF (radio-frequency) discharge plasma under the influence of thermophoretic force, induced by laser radiation, depending on the material and type of surface of the particle, are presented. Unlike passive Brownian particles, active Brownian particles, also known as micro-swimmers, move directionally. It was shown that different dust particles in gas discharge plasma can convert the energy of a surrounding medium (laser radiation) into the kinetic energy of motion. The movement of the active particle is a superposition of chaotic motion and self-propulsion.



Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 47
Author(s):  
Fubing Bao ◽  
Hanbo Hao ◽  
Zhaoqin Yin ◽  
Chengxu Tu

Nanoparticle deposition in microchannel devices inducing contaminant clogging is a serious barrier to the application of micro-electro-mechanical systems (MEMS). For micro-scale gas flow fields with a high Knudsen number (Kn) in the microchannel, gas rarefaction and velocity slip cannot be ignored. Furthermore, the mechanism of nanoparticle transport and deposition in the microchannel is extremely complex. In this study, the compressible gas model and a second-order slip boundary condition have been applied to the Burnett equations to solve the flow field issue in a microchannel. Drag, Brownian, and thermophoretic forces are concerned in the motion equations of particles. A series of numerical simulations for various particle sizes, flow rates, and temperature gradients have been performed. Some important features such as reasons, efficiencies, and locations of particle deposition have been explored. The results indicate that the particle deposition efficiency varies more or less under the actions of forces such as Brownian force, thermophoretic force, and drag force. Nevertheless, different forces lead to different particle motions and deposition processes. Brownian or thermophoretic force causes particles to move closer to the wall or further away from it. The drag force influence of slip boundary conditions and gas rarefaction changes the particles’ residential time in the channel. In order to find a way to decrease particle deposition on the microchannel surface, the deposition locations of different sizes of particles have been analyzed in detail under the action of thermophoretic force.



2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
◽  
◽  


2021 ◽  
Author(s):  
Chuchuan Hong ◽  
Samprity Saha ◽  
Dhruv Fomra ◽  
Nathaniel Kinsey ◽  
Justus C. Ndukaife
Keyword(s):  


Nano Letters ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 8811-8817
Author(s):  
Quanbo Jiang ◽  
Benoît Rogez ◽  
Jean-Benoît Claude ◽  
Guillaume Baffou ◽  
Jérôme Wenger


2019 ◽  
Author(s):  
Andres Bertoni ◽  
Nicolas Passarelli ◽  
Raúl Bustos-Marún

We assess the potentiality of several geometries of metallic nanodimers (one of the simplest thermoplasmonic systems) as candidates for active particles (nanoswimmers) propelled and controlled by light (phototaxis).<br>The studied nanodimers are formed by two spherical nanoparticles of gold, silver, or copper with radii ranging from 20 to 100 nm. Contrary to most proposals, which assume the asymmetry of the systems as a requirement for self-propulsion, our results show that nanodimers made of identical nanoparticles are excellent candidates for phototactic self-thermophoretic systems. Nonsymmetrical nanodimers, although having a tunable effective diffusion, possess much lower or null average thermophoretic forces. We show that the effective diffusion and the net thermophoretic force in both types of systems depend strongly on the wavelength of the incident light, which makes these properties highly tunable. Our study may result useful for the design of simple-to-make but controllable self-propelled nanoparticles, which can find numerous applications.



2019 ◽  
Author(s):  
Andres Bertoni ◽  
Nicolas Passarelli ◽  
Raúl Bustos-Marún

We assess the potentiality of several geometries of metallic nanodimers (one of the simplest thermoplasmonic systems) as candidates for active particles (nanoswimmers) propelled and controlled by light (phototaxis).<br>The studied nanodimers are formed by two spherical nanoparticles of gold, silver, or copper with radii ranging from 20 to 100 nm. Contrary to most proposals, which assume the asymmetry of the systems as a requirement for self-propulsion, our results show that nanodimers made of identical nanoparticles are excellent candidates for phototactic self-thermophoretic systems. Nonsymmetrical nanodimers, although having a tunable effective diffusion, possess much lower or null average thermophoretic forces. We show that the effective diffusion and the net thermophoretic force in both types of systems depend strongly on the wavelength of the incident light, which makes these properties highly tunable. Our study may result useful for the design of simple-to-make but controllable self-propelled nanoparticles, which can find numerous applications.



2019 ◽  
Vol 123 (20) ◽  
Author(s):  
Rodrigo de Miguel ◽  
J. Miguel Rubí


2019 ◽  
Vol 1220 ◽  
pp. 012041
Author(s):  
Kenta Ushiro ◽  
Tatsuya Shoji ◽  
Yasuyuki Tsuboi


Sign in / Sign up

Export Citation Format

Share Document