Prediction of Particle Deposition Efficiency in a 90° Turbulent Bend Pipe Flow—A Numerical Study

Author(s):  
Fatima Zahrae Erraghroughi ◽  
Kawtar Feddi ◽  
Anas El Maakoul ◽  
Abdellah Bah ◽  
Abdellatif Ben Abdellah
2020 ◽  
Vol 24 (9) ◽  
pp. 39-43
Author(s):  
O.V. Soloveva ◽  
S.A. Solovev ◽  
R.R. Yafizov

In this work we carried out a numerical study of the gas flow through an open cell foam material with solid-state partitions and partitions containing micropores. The effect of a geometry change by adding micropores on the pressure drop, particle deposition efficiency, and filter quality factor is estimated. The results showed that the addition of micropores positively affects the filtering and hydrodynamic properties of the highly porous material for the same macroporosity of the medium, and for the case of total porosity of the medium, the material with micropores allows one to obtain an increased value of the deposition efficiency and filter quality factor for small particles.


Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 47
Author(s):  
Fubing Bao ◽  
Hanbo Hao ◽  
Zhaoqin Yin ◽  
Chengxu Tu

Nanoparticle deposition in microchannel devices inducing contaminant clogging is a serious barrier to the application of micro-electro-mechanical systems (MEMS). For micro-scale gas flow fields with a high Knudsen number (Kn) in the microchannel, gas rarefaction and velocity slip cannot be ignored. Furthermore, the mechanism of nanoparticle transport and deposition in the microchannel is extremely complex. In this study, the compressible gas model and a second-order slip boundary condition have been applied to the Burnett equations to solve the flow field issue in a microchannel. Drag, Brownian, and thermophoretic forces are concerned in the motion equations of particles. A series of numerical simulations for various particle sizes, flow rates, and temperature gradients have been performed. Some important features such as reasons, efficiencies, and locations of particle deposition have been explored. The results indicate that the particle deposition efficiency varies more or less under the actions of forces such as Brownian force, thermophoretic force, and drag force. Nevertheless, different forces lead to different particle motions and deposition processes. Brownian or thermophoretic force causes particles to move closer to the wall or further away from it. The drag force influence of slip boundary conditions and gas rarefaction changes the particles’ residential time in the channel. In order to find a way to decrease particle deposition on the microchannel surface, the deposition locations of different sizes of particles have been analyzed in detail under the action of thermophoretic force.


2020 ◽  
Vol 364 ◽  
pp. 572-583
Author(s):  
Jiwei Guo ◽  
Zhanxiu Chen ◽  
Boxiong Shen ◽  
Jin Wang ◽  
Li Yang

2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110178
Author(s):  
Zhengang Liu ◽  
Weinan Diao ◽  
Zhenxia Liu ◽  
Fei Zhang

Particle deposition could decrease the aerodynamic performance and cooling efficiency of turbine vanes and blades. The particle motion in the flow and its temperature are two important factors affecting its deposition. The size of the particle influences both its motion and temperature. In this study, the motion of particles with the sizes from 1 to 20 μm in the first stage of a turbine are firstly numerically simulated with the steady method, then the particle deposition on the vanes and blades are numerically simulated with the unsteady method based on the critical viscosity model. It is discovered that the particle deposition on vanes mainly formed near the leading and trailing edge on the pressure surface, and the deposition area expands slowly to the whole pressure surface with the particle size increasing. For the particle deposition on blades, the deposition area moves from the entire pressure surface toward the tip with the particle size increasing due to the effect of rotation. For vanes, the particle capture efficiency increases with the particle size increasing since Stokes number and temperature of the particle both increase with its size. For blades, the particle capture efficiency increases firstly and then decreases with the particle size increasing.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 268
Author(s):  
Olga V. Soloveva ◽  
Sergei A. Solovev ◽  
Ruzil R. Yafizov

In this work, a study was carried out to compare the filtering and hydrodynamic properties of granular filters with solid spherical granules and spherical granules with modifications in the form of micropores. We used the discrete element method (DEM) to construct the geometry of the filters. Models of granular filters with spherical granules with diameters of 3, 4, and 5 mm, and with porosity values of 0.439, 0.466, and 0.477, respectively, were created. The results of the numerical simulation are in good agreement with the experimental data of other authors. We created models of granular filters containing micropores with different porosity values (0.158–0.366) in order to study the micropores’ effect on the aerosol motion. The study showed that micropores contribute to a decrease in hydrodynamic resistance and an increase in particle deposition efficiency. There is also a maximum limiting value of the granule microporosity for a given aerosol particle diameter when a further increase in microporosity leads to a decrease in the deposition efficiency.


2015 ◽  
Vol 81 ◽  
pp. 90-99 ◽  
Author(s):  
Yuji Fujitani ◽  
Yutaka Sugaya ◽  
Masanori Hashiguchi ◽  
Akiko Furuyama ◽  
Seishiro Hirano ◽  
...  

2019 ◽  
Vol 11 (3) ◽  
pp. 751
Author(s):  
Hao Lu ◽  
Li-zhi Zhang

Dry deposition of airborne particles in duct air flow over a backward-facing step (BFS) is commonly encountered in built environments and energy engineering. However, the understanding of particle deposition characteristics in BFS flow remains insufficient. Thus, this study investigated particle deposition behaviors and efficiency in BFS flow by using the Reynolds stress model and the discrete particle model. The influences of flow velocities, particle diameters, and duct expansion ratios on particle deposition characteristics were examined and analyzed. After numerical validation, particle deposition velocities, deposition efficiency, and deposition mechanisms in BFS duct flow were investigated in detail. The results showed that deposition velocity in BFS duct flow monotonically increases when particle diameter increases. Moreover, deposition velocity falls with increasing expansion ratio but rises with increasing air velocity. Deposition efficiency, the ratio of deposition velocity, and flow drag in a BFS duct is higher for small particles but lower for large particles as compared with a uniform duct. A higher particle deposition efficiency can be achieved by BFS with a smaller expansion ratio. The peak deposition efficiency can reach 33.6 times higher for 1-μm particles when the BFS expansion ratio is 4:3. Moreover, the “particle free zone” occurs for 50-μm particles in the BFS duct and is enlarged when the duct expansion ratio increases.


Sign in / Sign up

Export Citation Format

Share Document