scholarly journals HPMC Capsules: Current Status and Future Prospects

2010 ◽  
Vol 13 (3) ◽  
pp. 428 ◽  
Author(s):  
Moawia M Al-Tabakha

Hydroxypropyl methylcellulose (HPMC) is employed for a wide variety of pharmaceutical and food preparations. Its applications as viscolizing agent (thickening agent), coating polymer, bioadhesive, in solid dispersion to enhance solubility, binder in the process of granulation and in modified release formulations have been well documented. One other notable use is in the production of capsule shells, replacing the animal derived gelatin in conventional two-piece capsules. The aim of this review is to systemically survey published literature on the HPMC use in capsule shells and resolve questions regarding their suitability as a replacement for hard gelatin capsules. Future refinements in the production and filling of HPMC capsule shells and improvement in their in vivo/in vitro dissolution would ensure their superiority over hard gelatin capsules.

Author(s):  
Sutapa Biswas Majee ◽  
Dhruti Avlani ◽  
Gopa Roy Biswas

The most common instability problem of gelatin capsules arises from negative impact of extremes of temperature and especially atmospheric relative humidity on the mechanical integrity of the capsule shells with adverse effect extended even to the fill material. Moreover, choice of fill materials is highly restricted either due to their specific chemical structure, physical state or hygroscopicity. Additional reports of unpredictable disintegration and dissolution of filled hard gelatin capsules in experimental studies have prompted the search for a better alternative capsule shell material. The present review aims to provide an overview on the physicochemical, pharmaceutical and biopharmaceutical properties of hydroxypropyl methylcellulose (HPMC) as capsule shell material and perform comparative evaluation of HPMC and gelatin in terms of in vitro/in vivo performance and storage stability. HPMC capsule provides a highly flexible and widely acceptable platform capable of solving numerous challenges currently facing the pharmaceutical and nutraceutical industries and expands the possibilities for selection of different types of fill materials. The current topic introduces a new section on influence of various factors on in vitro dissolution of HPMC capsules. Delayed in vitro disintegration/dissolution of HPMC capsules in aqueous medium does not produce any negative effect in vivo. However, advancements in the processes of production and filling of HPMC capsule shells and detailed studies on effects of various parameters on their in vitro/in vivo dissolution would establish their supremacy over hard gelatin capsules in future.


2021 ◽  
Vol 24 ◽  
pp. 548-562
Author(s):  
Matthias Shona Roost ◽  
Henrike Potthast ◽  
Chantal Walther ◽  
Alfredo García-Arieta ◽  
Ivana Abalos ◽  
...  

This article describes an overview of waivers of in vivo bioequivalence studies for additional strengths in the context of the registration of modified release generic products and is a follow-up to the recent publication for the immediate release solid oral dosage forms. The current paper is based on a survey among the participating members of the Bioequivalence Working Group for Generics (BEWGG) of the International Pharmaceutical Regulators Program (IPRP) regarding this topic. Most jurisdictions consider the extrapolation of bioequivalence results obtained with one (most sensitive) strength of a product series as less straightforward for modified release products than for immediate release products. There is consensus that modified release products should demonstrate bioequivalence not only in the fasted state but also in the fed state, but differences exist regarding the necessity of additional multiple dose studies. Fundamental differences between jurisdictions are revealed regarding requirements on the quantitative composition of different strengths and the differentiation of single and multiple unit dosage forms. Differences in terms of in vitro dissolution requirements are obvious, though these are mostly related to possible additional comparative investigations rather than regarding the need for product-specific methods. As with the requirements for immediate release products, harmonization of the various regulations for modified release products is highly desirable to conduct the appropriate studies from a scientific point of view, thus ensuring therapeutic equivalence.


2018 ◽  
Vol 16 (1) ◽  
pp. 79-85 ◽  
Author(s):  
Marilena Vlachou ◽  
Stefanos Kikionis ◽  
Angeliki Siamidi ◽  
Konstantina Tragou ◽  
Stefania Kapoti ◽  
...  

Objective: Aiming at the modified release of melatonin (MLT), electrospun-MLT loaded nanofibers, filled into hard gelatin and DRcapsTM capsules, were used as formulants. Methods: Cellulose acetate, polyvinylpyrrolidinone and hydroxypropylmethylcellusose (HPMC 2910) were used for the preparation of the fiber matrices through electrospinning. The in vitro modified release profile of MLT from the fabricated matrices in gastrointestinal-like fluids was studied. At pH 1.2, the formulations CA1, CA2, PV1, HP1, HP2 and the composite formulations CAPV1-CAPV5 in hard gelatin capsules exhibited fast MLT release. Results: In general, the same trend was observed at pH 6.8, with the exception of CAPV1 and CAPV2. These two composite formulations delivered 52.08% and 75.25% MLT, respectively at a slower pace (6 h) when encapsulated in DRcapsTM capsules. In all other cases, the release of MLT from DRcapsTM capsules filled with the MLT-loaded nanofibers reached 100% at 6h. Conclusion: These findings suggest that the MLT-loaded nanofibrous mats developed in this study exhibit a promising profile for treating sleep dysfunctions.


1991 ◽  
Vol 76 (1-2) ◽  
pp. 49-53 ◽  
Author(s):  
Pedro R. Petrovick ◽  
Maurice Jacob ◽  
Daniel Gaudy ◽  
Valquiria L. Bassani ◽  
Silvia S. Guterres

Author(s):  
Poornima P ◽  
Abbulu K ◽  
Mukkanti K

Objective: Current research concerns the expansion of repaglinide matrix floating tablets, which are designed to prolong the gastric residence time, increase the drug bioavailability, and diminish the side effects.Methods: Different formulations of repaglinide floating tablets were prepared with different grades of hydroxypropyl methylcellulose (HPMC) and other agents. Evaluation parameters and in vivo bioavailability studies were conducted in the suitable model.Results: Among all the formulations, F21 containing HPMC K1500 PH PRM, Polyox WSR 303, and sodium bicarbonate, as gas generating agent was selected as optimized formulation based on physicochemical properties, floating lag time (36 s), and total floating time (>24 h). From in vitro dissolution studies, the optimized formulation F21 showed drug release of 98.92±5.19% within 24 h whereas 95.09±5.01% of the drug was released from the marketed product within 1 h.Conclusion: From in vitro and in vivo bioavailability studies repaglinide floating tablets expected to give a new choice for safe, economical, and increased bioavailability for effective management of diabetes mellitus.


2015 ◽  
Vol 65 (4) ◽  
pp. 427-441 ◽  
Author(s):  
Marija Ilić ◽  
Ivan Kovačević ◽  
Jelena Parojčić

Abstract With the increased reliance on in vitro dissolution testing as an indicator of in vivo drug behavior and the trend towards the in silico modeling of dosage form performance, the need for bioperformance dissolution methodology development has been enhanced. Determination of the in vivo drug delivery profile is essential for the bioperformance dissolution test development and in vitro/in vivo correlation modeling, as well as the understanding of absorption mechanisms. The aim of this study was to compare different methods in terms of their usefulness and applicability in deciphering in vivo delivery of nifedipine administered in modified release dosage forms. A detailed survey of publications on nifedipine pharmacokinetics was done and used to identify the magnitude of food effect. In vitro dissolution testing was performed under various experimental conditions. Obtained results indicate the potential for using the developed in silico model coupled with discriminative in vitro dissolution data for identification of the in vivo drug product behavior


2018 ◽  
Vol 7 (9) ◽  
pp. 244 ◽  
Author(s):  
Tapan Dey ◽  
Jatin Kalita ◽  
Sinéad Weldon ◽  
Clifford Taggart

In the context of respiratory disease, chronic obstructive pulmonary disease (COPD) is the leading cause of mortality worldwide. Despite much development in the area of drug development, currently there are no effective medicines available for the treatment of this disease. An imbalance in the protease: Antiprotease ratio in the COPD lung remains an important aspect of COPD pathophysiology and several studies have shown the efficacy of antiprotease therapy in both in vitro and in vivo COPD models. However more in-depth studies will be required to validate the efficacy of lead drug molecules targeting these proteases. This review discusses the current status of protease-directed drugs used for treating COPD and explores the future prospects of utilizing the potential of antiprotease-based therapeutics as a treatment for this disease.


Sign in / Sign up

Export Citation Format

Share Document