Enhancement of Activity of Bacillus thuringiensis Berliner Against Four Lepidopterous Insect Pests by Nutrient-Based Phagostimulants1

1995 ◽  
Vol 30 (1) ◽  
pp. 29-42 ◽  
Author(s):  
Robert R. Farrar ◽  
Richard L. Ridgway

To help improve control of insect pests with microbial insecticides, we investigated the interactions of four commercial, nutrient-based phagostimulants (Pheast [AgriSense], Coax [CCT Corp.], Gusto [Atochem North America, Inc.], and Entice [Custom Chemicides] with Bacillus thuringiensis Berliner and four lepidopterous insect pests (gypsy moth, Lymantria dispar [L.] [Lymantriidae]; corn earworm, Helicoverpa zea [Boddie] [Noctuidae]; European corn borer, Ostrinia nubilalis [Hübner] [Pyralidae]; and diamondback moth, Plutella xylostella [L.] [Plutellidae]). Comparisons were made of treated foliage in Petri dishes in the laboratory and of sprayed whole plants in a greenhouse. In general, phagostimulants increased mortality of all species tested, but no consistent differences among phagostimulants were found for any species. Food consumption was generally lower on the treatments that contained phagostimulants causing the highest rates of mortality, possibly as a result of more rapid ingestion of a lethal dose on these treatments. Reduced rates of feeding by insects on treatments with B. thuringiensis alone were seen, probably due in part to intoxication and, possibly, to behavioral effects as well. Indications of potentially significant interactions between host plants and both B. thuringiensis and phagostimulants also were seen.

1999 ◽  
Vol 34 (3) ◽  
pp. 273-285
Author(s):  
Richard L. Ridgway ◽  
Robert R. Farrar

Five commercial granular formulations of Bacillus thuringiensis Berliner marketed for controlling the European corn borer, Ostrinia nubilalis (Hübner), were compared for insecticidal activity using treated discs of bean leaves. Three formulations, Dipel 10G®, Full-Bac ECBG™, and Strike BT®, were similar in terms of both mortality and speed of kill. A formulation containing a strain of B. thuringiensis developed by plasmid fusion, Condor G®, caused mortality similar to the other three formulations, but the speed of kill was slower. A fifth formulation containing a B. thuringiensis toxin produced by Pseudomonas fluorescens Migula as result of a gene transfer, M-Peril™, caused substantially less mortality than any of the other formulations. An experimental water dispersible formulation, based on a previously developed granular matrix formulation containing B. thuringiensis and a nutrient-based phagostimulant, caused significantly higher mortality of the European corn borer than a similar formulation without the phagostimulant. Simulated field studies were conducted to study the effects of the phagostimulant on feeding and protection of B. thuringiensis from ultraviolet (UV) light. Bean plants treated with B. thuringiensis and the phagostimulant were exposed to different UV regimes outdoors under canopies made of specialized acrylic plastics and then infested with larvae of the corn earworm, Helicoverpa zea (Boddie). A significant interaction between the UV regimes and the phagostimulant was found, indicating that the phagostimulant acted both as a feeding stimulant and as a UV protectant to enhance the activity of B. thuringiensis.


2004 ◽  
Vol 14 (3) ◽  
pp. 307-314 ◽  
Author(s):  
Rosalind Cook ◽  
Anne Carter ◽  
Pamela Westgate ◽  
Ruth Hazzard

Corn oil and Bacillus thuringiensis ssp. kurstaki (Bt) applied directly into the silk channel of a corn ear has been shown to be an effective pesticide against corn earworm, Helicoverpa zea (CEW), and european corn borer, Ostrinia nubilalis (ECB). Field studies were conducted in 2000 and 2001 to determine the influence of application timing on ear quality at harvest. Two blocks of corn were planted during each year to observe treatment effects under varying populations of the two insect species. The treatment consisted of 0.5 mL (0.017 floz) of food grade corn oil containing a suspension of Bt at 0.08 g (0.003 oz) a.i. per ear applied directly into the silk channel at the husk opening. One treatment application was made on each silk day 3 through 11 from first silk; silk day 1 was the first day that 50% or more of ears had 2.5 cm (1 inch) of silk protruding from the husk. One treatment did not receive the oil + Bt suspension. All ears were harvested at milk stage, on silk day 25. The number of CEW larvae in treated ears increased with later application days in 2000, but not in 2001. Damage from larval feeding was mainly found near the tip of the ear, and damage ratings were lower compared to untreated ears for all treatment days for both plantings in 2000, and through application day 8 in the late planting of 2001. ECB larvae were reduced for all treatment days in both plantings in 2000 and the late planting of 2001. The percentage of ears rated as marketable (i.e., free of feeding damage) ranged from 71% to 100% in treated plots compared to 30% to 77% in the untreated plots. There was a linear decrease in marketability with later application days in two of the four plantings. The greatest decrease in marketability was after application day 7. Because the oil application affects kernel development at the tip, the length of ear with under-developed kernels, or cone tip, was measured. The number of ears with cone tip decreased linearly with the later application days in all plantings. There was 10% conetip or less after day 7 in 2000 and day 6 in 2001. The best combination of effective insect control resulting in the highest rates of marketable ears with the least degree of cone tip was achieved in this experiment by application of oil + Bt suspension on day 7. Year to year variation in the environment would suggest a range from day 6 to 8.


1994 ◽  
Vol 29 (4) ◽  
pp. 496-508 ◽  
Author(s):  
Michael R. McGuire ◽  
Robert L. Gillespie ◽  
Baruch S. Shasha

Two types of pregelatinized corn flour were used to produce granules containing Bacillus thuringiensis Berliner subsp. kurstaki and various additives for control of the European corn borer, Ostrinia nubilalis (Hübner), in the whorl of corn plants. Laboratory-reared larvae were applied to corn whorls in the greenhouse and field, and a high natural infestation occurred at one field site (Champaign). In the greenhouse and at all three field sites, five of these formulations were just as effective as Dipel 10G, a commercially available B. thuringiensis product, for control of European corn borer larvae. In all greenhouse studies and at one of the three field sites (Champaign), the dose of B. thuringiensis could be reduced by as much as 75% when a phagostimulant was added to flour granules without significant loss of corn borer control. The phagostimulant dose response was not observed at the other two field sites in which larval infestations were relatively low. Flour type had no significant effect on European corn borer control under greenhouse and field conditions. Greenhouse evaluations provided results significantly similar to results from two of the field sites indicating the usefulness of the technique. The data presented highlight the versatility and potential for using novel formulation techniques for enhancing the efficacy of B. thuringiensis.


2009 ◽  
Vol 44 (4) ◽  
pp. 383-390
Author(s):  
John D. Sedlacek ◽  
Karen L. Friley ◽  
Steve L. Hillman

Sweet corn (Zea mays L. var. rugosa) was grown in replicated plots in 2004 and 2006 using organic, conventional, and genetically-engineered (Bt) production practices. Organic plots were treated with Entrust® (Dow AgroSciences LLC, Indianapolis, IN) whereas conventional and Bt sweet corn plots were treated with Warrior® (Syngenta Crop Protection, Inc., Greensboro, NC). All plots were treated once at silk emergence. Organic and conventional plots were treated again 1 wk later. Twenty-five ears were harvested from row centers in each treatment subplot to quantify ear pests and assess ear damage. The highest number of corn earworm, Helicoverpa zea (Boddie), larvae were found on organically-grown sweet corn. European corn borer, Ostrinia nubilalis (Hübner); southwestern corn borer, Diatraea grandiosella Dyar; and fall armyworm, Spodoptera frugiperda (J.E. Smith), larvae were not found as frequently. Neither corn earworm nor European corn borer larvae were found on Bt sweet corn ears. Sap beetles, Carpophilus lugubris Murray, were found on all 3 types of sweet corn. Organically and conventionally-grown sweet corn had a greater number of tip-damaged ears and numbers of damaged kernels per ear than Bt sweet corn. Ear length and weight were the same for all 3 types of sweet corn. Based on the information generated in this study, growing late-planted sweet corn organically or conventionally on a large commercial scale with a limited spray program and without using other types of ear pest management does not appear to be a practical or profitable option in central Kentucky.


1999 ◽  
Vol 80 (10) ◽  
pp. 2793-2798 ◽  
Author(s):  
Robert L. Harrison ◽  
Bryony C. Bonning

The 7·8 kb EcoRI-G fragment of Rachiplusia ou multicapsid nucleopolyhedrovirus (RoMNPV), containing the polyhedrin gene, was cloned and sequenced. The sequence of the fragment was 92·3% identical to the sequence of the corresponding region in the Autographa californica (Ac)MNPV genome. A comparison of the EcoRI-G sequence with other MNPV sequences revealed that RoMNPV was most closely related to AcMNPV. However, the predicted amino acid sequence of RoMNPV polyhedrin shared more sequence identity with the polyhedrin of Orygia pseudotsugata MNPV. In addition, the RoMNPV sequence was almost completely identical (99·9%) to a previously published 6·3 kb sequence of Anagrapha falcifera MNPV (AfMNPV). The Eco RI and HindIII restriction fragment profiles of RoMNPV and AfMNPV also were nearly identical, with an additional EcoRI band detected in RoMNPV DNA. Bioassays of these viruses with three different hosts (the European corn borer, Ostrinia nubilalis H übner, the corn earworm, Helicoverpa zea Boddie, and the tobacco budworm, Heliothis virescens Fabricius) failed to detect any differences in the biological activities of RoMNPV and AfMNPV. These results indicate that RoMNPV and AfMNPV are different isolates of the same virus. The taxonomic relationship of Ro/AfMNPV and AcMNPV is discussed.


2010 ◽  
Vol 58 (1) ◽  
pp. 73-79
Author(s):  
F. Pál-Fám ◽  
Z. Varga ◽  
S. Keszthelyi

A better understanding of the relationships between insects and microfungi could help to identify the unknown factors reducing yields in maize. As the first step in current research, the aim was to isolate the microfungal species that can be found in the larval cavity of the European corn borer ( Ostrinia nubilalis Hbn. Lepidoptera. Pyraustidae ) (ECB), one of the most important insect pests of maize. In this way, the scale of potential phytopathogens spread by intermediate hosts could be reduced.Fifty stalk sections damaged by ECB larvae were collected in autumn and fifty in spring on a 20-hectare plot in Ráksi (Somogy county). These were placed in wet chambers and incubated at room temperature under natural light. Identification was done from a pure culture inoculated into potato dextrose agar. Twenty-one species from 14 fungus genera were identified, the majority of which were mitosporic fungi. Species belonging to the Fusarium, Acremoniella and Cladosporium genera were predominant. Most of the species were saprotrophic, though some phytopathogenic species ( Gibberella, Colletotrichum, Nigrospora and Fusarium ) were also identified. The number of genera and the incidence of fungi were much higher in spring samples than in autumn ones, except for Fusarium , where incidence was lower in spring. It was found that failing to harvest the maize significantly enhanced the spread of several fungus species, especially phytopathogenic species, the following year, thereby serving as a source of infection.


Sign in / Sign up

Export Citation Format

Share Document