A Rapid Bioassay for Detection of Adulterated Beeswax

1999 ◽  
Vol 34 (3) ◽  
pp. 265-272 ◽  
Author(s):  
Italo S. Aquino ◽  
Charles I. Abramson ◽  
Mark E. Payton

Proboscis extension was used to test the ability of honey bees (Apis mellifera L.) to detect beeswax adulterated with carnauba wax (Copernicia cerifera Arruda Camara). Subjects were exposed to either 100% beeswax (honeycomb) (e.g., no carnauba wax), 100% beeswax (melted) (e.g., as commercial beeswax cake), 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10% beeswax/carnauba mixtures, 0% beeswax (i.e., 100% carnauba wax), or unscented air. Maximum responding was observed in bees exposed to the scent of honey comb or melted beeswax cake. The addition of as little as 10% carnauba wax was readily detected and resulted in reduced proboscis extensions. Few proboscis extensions occurred to bees exposed to unscented air or 100% carnauba wax. The results indicate that the proboscis extension reflex can be used as a rapid, inexpensive, and reliable bioassay for the detection of adulterated beeswax. The bioassay will be useful in developing countries where chemical and physical methods are unavailable for detecting adulterated beeswax and can serve as an initial component in a comprehensive program of adulteration detection. An equation that predicts the probability of a proboscis response given the percent of adulterated wax is presented.

Author(s):  
Kiri Li N. Stauch ◽  
Harrington Wells ◽  
Charles I. Abramson

Previous research looking at expectancy in animals has used various experimental designs focusing on appetitive and avoidance behaviors. In this study, honey bees (Apis mellifera) were tested ina series of three proboscis extension response (PER) experiments to determine to what degree honey bees’ form a cognitive-representation of an unconditioned stimulus (US). Tthe first experiment, bees were presented with either a 2 sec. sucrose US or 2 sec. honey US appetitive reward and the proboscis-extension duration was measured under each scenario. The PER duration was longer for the honey US even though each US was presented for just 2 sec. Honey bees in the second experiment were tested during extinction trials on a conditioned stimulus (CS) of cinnamon or lavender that was paired with either the sucrose US or honey US in the acquisition trials. The proportion of bees showing the PER response to the CS was recorded for each extinction trial for each US scenario, as was the duration of the proboscis extension for each bee. Neither measure differed between the honey US and sucrose US scenarios, In experiment three, bees were presented with a cinnamon or lavender CS paired with either honey US or sucrose US in a set of acquisition trials, but here the US was not given until after the proboscis was retracted. The PER duration after the CS, and again subsequent after the US, were recorded. While the PER duration after the US was longer for honey, the PER duration after the CS did not differ between honey US and sucrose US.


BIO-PROTOCOL ◽  
2017 ◽  
Vol 7 (23) ◽  
Author(s):  
Yu Guo ◽  
Zilong Wang ◽  
Zhijiang Zeng ◽  
Shaowu Zhang ◽  
Runsheng Chen

2012 ◽  
Vol 111 (2) ◽  
pp. 473-492 ◽  
Author(s):  
Sondra L. Nolf ◽  
David Philip Arthur Craig ◽  
Charles I. Abramson

This paper attempts to stimulate the psychological investigation of homeopathy and serially agitated dilutions. The history of homeopathy and serial dilutions is provided in a literature review of selected research areas. Two original illustrative experiments are also presented and discussed. The first examined the effect of serially agitated dilutions of Sevin® on the mortality rate of honey bees ( Apis mellifera). In a second experiment, the effect of serially agitated dilutions of sucrose on proboscis extension in honey bees was assessed. No differences were found between serially agitated dilutions of pesticides and sucrose compared with dilutions alone. Implications, limitations, and proposed further work are discussed.


Insects ◽  
2015 ◽  
Vol 6 (4) ◽  
pp. 805-814 ◽  
Author(s):  
Steeve Thany ◽  
Céline Bourdin ◽  
Jérôme Graton ◽  
Adèle Laurent ◽  
Monique Mathé-Allainmat ◽  
...  

Insects ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 572 ◽  
Author(s):  
Pegah Valizadeh ◽  
Ernesto Guzman-Novoa ◽  
Paul H. Goodwin

Nosema disease is a major disease of honey bees caused by two species of microsporidia, Nosema apis and N. ceranae. Current control involves using antibiotics, which is undesirable because of possible antibiotic resistance and contamination. In this study, flagellin, zymosan, chitosan, and peptidoglycan were investigated as alternatives for controlling N. ceranae infections and for their effect on bee survivorship and behaviors. Chitosan and peptidoglycan significantly reduced the infection, and significantly increased survivorship of infected bees, with chitosan being more effective. However, neither compound altered the bees’ hygienic behavior, which was also not affected by the infection. Chitosan significantly increased pollen foraging and both compounds significantly increased non-pollen foraging compared to healthy and infected bees. Memory retention, evaluated with the proboscis extension reflex assay, was temporarily impaired by chitosan but was not affected by peptidoglycan, nor was it affected by N. ceranae infection compared to the non-infected bees. This study indicates that chitosan and peptidoglycan provide benefits by partially reducing N. ceranae spore numbers while increasing survivorship compared to N. ceranae infected bees. Also, chitosan and peptidoglycan improved aspects of foraging behavior even more than in healthy bees, showing that they may act as stimulators of important honey bee behaviors.


Sign in / Sign up

Export Citation Format

Share Document