Phylogenetic Relationships of Chinese Coptotermes (Blattodea: Isoptera: Rhinotermitidae) Termites and a New Synonym Inferred from Morphological Data

2021 ◽  
Vol 57 (1) ◽  
Author(s):  
Yunling Ke ◽  
Shijun Zhang ◽  
Zhiqiang Li
Zootaxa ◽  
2011 ◽  
Vol 2900 (1) ◽  
pp. 1 ◽  
Author(s):  
HUME DOUGLAS

A phylogeny is presented for the Elateridae, inferred from parsimony and Bayesian analyses of 175 adult morphological characters. Analyses using non gap-weighted morphological data yielded results compatible with each other and some published classifications, while gap-weighted parsimony analysis did not. Bayesian posterior probabilities for the monophyly of the Elateridae and the elaterid subfamilies Athoinae (sensu Dolin 1975), Cardiophorinae (including Exoeolus Broun), Denticollinae (sensu Stibick 1979a), Elaterinae (sensu Stibick 1979a), Hypnoidinae (sensu Stibick 1976) and Lissominae (sensu Calder et al. 1993) were less than 0.05. The bioluminescent genus Pyrophorus was found to be an apical member of the mostly non-bioluminescent Agrypninae, supporting the hypothesis of at least one independent origin of bioluminescence in the Elateridae. The closest relatives to the Cardiophorinae minus Exoeolus were found in the Negastriinae. The subfamilies Cardiophorinae + Negastriinae + Tropihypnus Reitter together rendered the Hypnoidinae (or the tribe Hypnoidini of Denticollinae) paraphyletic. Lesnelater madagascariensis Fleutiaux (the type species of Lesnelater Fleutiaux) is synonymised under the type species of Pachyelater Lesne: P. madagascariensis (Lesne) so that Lesnelater is a new synonym of Pachyelater. The genus Exoeolus Broun is transferred from the Cardiophorinae to the Hemiopinae; the fossil genus Crioraphes Iablokoff-Khnzorian is transferred to the Elaterinae incertae sedis; the fossil genera Pseudocardiophorites Dolin, and Protocardiophorus Dolin are transferred to Elateroidea incertae sedis. Dolin’s (1976) hypothesis of a Jurassic origin of the Cardiophorinae was not supported by fossil evidence.


Phytotaxa ◽  
2019 ◽  
Vol 391 (2) ◽  
pp. 122 ◽  
Author(s):  
MURAT KOÇ ◽  
ERGIN HAMZAOĞLU ◽  
AHMET AKSOY

The genus Minuartia is represented in Turkey by 34 taxa. Some interesting specimens were collected from Antalya province, and examined. These specimens resemble Minuartia meyeri, and M. multinervis from which differ by characters (macro-, and micromorphological) of inflorescence, alar pedicels, petals, sepals, capsules and seeds. Moreover, by using the DNA sequences of the ITS genes, phylogenetic relationships between this collected species, and the related species were investigated. As a result of the evaluation of molecular, and morphological data, we proposed to described the population from Antalya as a new species for the science. A description, pictures, distribution, habitat, and IUCN category are given.


2019 ◽  
Vol 19 (2) ◽  
Author(s):  
Rung-Juen Lin ◽  
Michael F Braby ◽  
Yu-Feng Hsu

Abstract The life history, morphology, and biology of the immature stages and phylogenetic relationships of Rotunda rotundapex (Miyata & Kishida, 1990) are described and illustrated for the first time. The species is univoltine: eggs hatch in spring (March or April) and the life cycle from egg to adult is completed in about 3 wk, with larvae developing rapidly on young leaves of the host plants, Morus australis and to a lesser extent Broussonetia monoica (Moraceae), and adults emerging in April–May. Eggs are laid in clusters on twigs of the host plant, are covered by scales during female oviposition, and remain in diapause for the remainder of the year (i.e., for 10–11 mo). Larvae (all instars) are unique among the Bombycidae in that they lack a horn on abdominal segment 8. A strongly supported molecular phylogeny based on six genes (5.0 Kbp: COI, EF-1α, RpS5, CAD, GAPDH, and wgl) representing seven genera of Bombycinae from the Old World revealed that Rotunda is a distinct monotypic lineage sister to Bombyx. This phylogenetic position, together with morphological data of the immature stages (egg and larval chaetotaxy), supports the current systematic classification in which the species rotundapex has been placed in a separate genus (Rotunda) from Bombyx in which it was previously classified.


1997 ◽  
Vol 84 (4) ◽  
pp. 530-540 ◽  
Author(s):  
Cynthia M. Morton ◽  
Scott A. Mori ◽  
Ghillean T. Prance ◽  
Ken G. Karol ◽  
Mark W. Chase

Zootaxa ◽  
2012 ◽  
Vol 3315 (1) ◽  
pp. 1 ◽  
Author(s):  
FERNANDO LOBO ◽  
CRISTIAN ABDALA ◽  
SOLEDAD VALDECANTOS

With 36 species and at least nine potentially independent lineages (not formally described yet) occurring mostly in theAndes and adjacent Patagonia and Puna plateau areas, Phymaturus lizards represent one of the most endemic vertebrategroups of the arid southwestern region of South America. Phylogenetic relationships among species of Phymaturus areinferred using mainly a morphological data set of 206 characters. Also available sequences of mitochondrial DNA for sev-en terminals were added for a total evidence analysis. Most information is included in the discrete characters block; mostcharacters involve color pattern, osteology and squamation. Continuous characters were taken from body proportions,squamation and skeletons. Among morphological data, binary polymorphic characters were analyzed applying the scaledcoding criteria. Continuous characters were entered in the analysis using standardized ranges, a method that allows a sim-ple optimization to estimate distances/costs avoiding the arbitrary coding as discrete characters. For our parsimony anal-yses we chose the implied weights method, which underweights homoplastic characters. Several runs were madeanalyzing all the information combined and also separating morphological from molecular datasets. Binary polymor-phisms were also analyzed as missing data. All characters affected by sexual dimorphism were analyzed separating thesexes; female information was more congruent with the total evidence analysis. Characters involving continuous and poly-morphic information are relevant for searching and building phylogenetic hypotheses in Phymaturus. There exists signif-icant congruence between the molecular information analyzed in this study and previous published analyses. Within bothmain clades of Phymaturus, northern subgroups are those more recently originated during the genus diversification. Spe-cies belonging to the puna subclade of the palluma group are arranged in two natural groups, one distributed in the north(Catamarca and La Rioja provinces), and the other in the south, La Rioja and San Juan provinces. Within the patagonicusgroup, the majority of the species are arranged in a south-central Chubut clade, eastern-central Chubut clade, central Rio Negro clade and a Payunia clade.


2010 ◽  
Vol 79 (3) ◽  
pp. 93-106 ◽  
Author(s):  
Juliana Sterli

The origin and evolution of the crown-group of turtles (Cryptodira + Pleurodira) is one of the most interesting topics in turtle evolution, second perhaps only to the phylogenetic position of turtles among amniotes. The present contribution focuses on the former problem, exploring the phylogenetic relationships of extant and extinct turtles based on the most comprehensive phylogenetic dataset of morphological and molecular data analyzed to date. Parsimony analyses were conducted for different partitions of data (molecular and morphological) and for the combined dataset. In the present analysis, separate analyses of the molecular data always retrieve Pleurodira allied to Trionychia. Separate analysis of the morphological dataset, by contrast, depicts a more traditional arrangement of taxa, with Pleurodira as the sister group of Cryptodira, being Chelonioidea the most basal cryptodiran clade. The simultaneous analysis of all available data retrieves all major extant clades as monophyletic, except for Cryptodira given that Pleurodira is retrieved as the sister group of Trionychia. The paraphyly of Cryptodira is an unorthodox result, and is mainly caused by the combination of two factors. First, the molecular signal allies Pleurodira and Trionychia. Second, the morphological data with extinct taxa locates the position of the root of crown-group Testudines in the branch leading to Chelonioidea. This study highlights major but poorly explored topics of turtle evolution: the alternate position of Pleurodira and the root of crown turtles. The diversification of crown turtles is characterized by the presence of long external branches and short internal branches (with low support for the internal nodes separating the major clades of crown turtles), suggesting a rapid radiation of this clade. This rapid radiation is also supported by the fossil record, because soon after the appearance of the oldest crown-group turtles (Middle-Late Jurassic of Asia) the number and diversity of turtles increases remarkably. This evolutionary scenario of a rapid diversification of modern turtles into the major modern lineages is likely the reason for the difficulty in determining the interrelationships and the position of the root of crown-group turtles.


Zootaxa ◽  
2007 ◽  
Vol 1517 (1) ◽  
pp. 53-62 ◽  
Author(s):  
FRANK GLAW ◽  
ZOLTÁN T. NAGY ◽  
MIGUEL VENCES

Based on a specimen found at Montagne d'Ambre in northern Madagascar morphologically agreeing with Compsophis albiventris Mocquard, 1894, we report on the rediscovery of this enigmatic snake genus and species and its molecular phylogenetic relationships. Compsophis albiventris, considered to be the only representative of its genus and unreported since its original description, bears strong morphological similarities to species of Geodipsas Boulenger, 1896. A molecular phylogeny based on DNA sequences of three mitochondrial and nuclear genes (complete cytochrome b, fragments of 16S rRNA and c-mos) in Compsophis albiventris and three Geodipsas species corroborated close relationships between C. albiventris and Geodipsas boulengeri, and showed that the genera Compsophis and Geodipsas together form a monophyletic unit. Despite the general similarities, morphological data and chromatic features support the existence of two species groups, corresponding to Compsophis and Geodipsas. We consequently consider Geodipsas as a subgenus of Compsophis and transfer all species currently in Geodipsas into the genus Compsophis.


Sign in / Sign up

Export Citation Format

Share Document