scholarly journals The structure of productivity elements of durum wheat varieties of Saratov selection

Author(s):  
Eduard G. Hachaturov ◽  
◽  
Valeria V. Korobko ◽  

The objects of the study were plants of 14 varieties of durum wheat Triticum durum Desf., permitted for use at different times in the period from 1975 to 2014. An analysis of the elements of ear productivity in durum wheat plants of Saratov varieties under the conditions of 2020 was carried out. The varietal features of the development of the spike of the main shoot were revealed according to a number of characteristics: the number of spikelets in a spike, the number of grains in an ear, the weight of a grain, the number of ungrained and grained spikelets. The height of the plant and the length of the spike were measured. On the basis of the data obtained, the selection indices were calculated – the Canadian index, the Mexican index, the index of the linear density of the ear, the morphogenetic index of productivity. A cultivar with a balanced type of morphogenetic systems was revealed in terms of the elements of ear productivity – the number of spikelets, the number of caryopses and their weight – Luch 25. This cultivar is characterized by the most developed embryonic shoot among the studied cultivars, as well as the maximum length of the embryonic root system and a high growth rate root system of the seedling.

2020 ◽  
Vol 6 (1) ◽  
pp. 1746229
Author(s):  
Molla Mekonnen ◽  
Getenet Sharie ◽  
Muluken Bayable ◽  
Amleku Teshager ◽  
Eshetie Abebe ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1149
Author(s):  
Guglielmo Puccio ◽  
Rosolino Ingraffia ◽  
Dario Giambalvo ◽  
Gaetano Amato ◽  
Alfonso S. Frenda

Identifying genotypes with a greater ability to absorb nitrogen (N) may be important to reducing N loss in the environment and improving the sustainability of agricultural systems. This study extends the knowledge of variability among wheat genotypes in terms of morphological or physiological root traits, N uptake under conditions of low soil N availability, and in the amount and rapidity of the use of N supplied with fertilizer. Nine genotypes of durum wheat were chosen for their different morpho-phenological characteristics and year of their release. The isotopic tracer 15N was used to measure the fertilizer N uptake efficiency. The results show that durum wheat breeding did not have univocal effects on the characteristics of the root system (weight, length, specific root length, etc.) or N uptake capacity. The differences in N uptake among the studied genotypes when grown in conditions of low N availability appear to be related more to differences in uptake efficiency per unit of weight and length of the root system than to differences in the morphological root traits. The differences among the genotypes in the speed and the ability to take advantage of the greater N availability, determined by N fertilization, appear to a certain extent to be related to the development of the root system and the photosynthesizing area. This study highlights some variability within the species in terms of the development, distribution, and efficiency of the root system, which suggests that there may be sufficient grounds for improving these traits with positive effects in terms of adaptability to difficult environments and resilience to climate change.


2015 ◽  
Vol 5 (2) ◽  
pp. 36
Author(s):  
Mourad Rezig ◽  
Hatem Cheikh M'hamed ◽  
Mbarek Ben Naceur

<p class="4Body">Total Dray Matter (TDM), Photosynthetically Active Radiation Intercepted (PARabs), Water Consumption (WC), Water use- (WUE), Radiation use efficiency (RUE) and the Relation between Radiation Interception and Water Consumption for Durum Wheat were investigate under different irrigation amount (D<sub>1</sub>= 100 % ETc; D<sub>2</sub>= 70 % ETc; D<sub>3</sub>= 40 % ETc and D<sub>4</sub>= pluvial) and during three growing seasons (2005-2006, 2006-2007 and 2007-2008). Results showed that, the cumulative PARabs decreased with deficit irrigation. In fact, D<sub>1</sub> treatment recorded the highest cumulative PAR abs and the lowest marked under D<sub>4</sub> treatment. Similarly, TDM and RUE were decreased with deficit irrigation. The highest RUE observed under the D<sub>1</sub> (from 1.32 to 1.43 g MJ<sup>-1</sup>) and the lowest under D<sub>4</sub> (from 1.17 to 1.29 g MJ<sup>-1</sup>). However WUE increased with deficit irrigation. The highest WUE were obtained under the D<sub>4</sub> (from 3 to 4 kg m<sup>-3</sup>) and the lowest were observed under D<sub>1</sub> (from 2.8 to 3.1 kg m<sup>-3</sup>). Significant linear relationship was found between cumulative PAR abs and cumulative water consumption with a high correlation coefficient (R<sup>2</sup>) only under the two treatments D<sub>1</sub> and D<sub>2</sub>.</p>


2010 ◽  
Vol 46 (1) ◽  
pp. 43-49 ◽  
Author(s):  
N. V. Melnikova ◽  
O. P. Mitrofanova ◽  
O. A. Liapounova ◽  
A. M. Kudryavtsev

2012 ◽  
Vol 64 (3) ◽  
pp. 93-102
Author(s):  
Irena Kiecana ◽  
Leszek Rachoń ◽  
Elżbieta Mielniczuk ◽  
Grzegorz Szumiło

Investigations were carried out in 2007-2009 on the plots of the Felin Experimental Station belonging to the University of Life Science in Lublin. The studies comprised two cultivation lines of durum wheat (<i>Triticum durum</i> L.): STH 716 and STH 717, as well as the 'Tonacja' cultivar of common wheat (<i>T. aestivum</i> ssp. <i>vulgare</i> L.). Two levels of chemical protection were applied in the cultivation: minimal and complex protection. Infection of wheat roots and stem bases was recorded in each growing season at hard dough stage (87 in Tottman's scale, 1987). After three years of study, the mean disease indexes for the analyzed wheat genotypes in the experimental treatment with minimal protection were 31.13, 30.43 and 38.83 for, respectively, the 'Tonacja' cultivar and the cultivation lines of <i>T. durum</i> STH 716 and STH 717. In the experimental combination with complex protection, after three years of study the disease indexes ranged from 25.26 (<i>T. durum</i> STH 716) to 30.83 (<i>T. durum</i> STH 717). The results of mycological analysis of diseased plants showed that <i>Fusarium</i> spp., especially <i>F. culmorum</i>, <i>F. avenaceum</i> as well as <i>Bipolaris sorokiniana</i> and <i>Rhizoctonia solani</i>, caused root rot and necrosis of wheat stem bases. The analyzed chemical protection levels did not significantly influence grain yield of the investigated genotypes of <i>T. aestivum</i> and <i>T. durum</i>.


Sign in / Sign up

Export Citation Format

Share Document