scholarly journals Morphological and Physiological Root Traits and Their Relationship with Nitrogen Uptake in Wheat Varieties Released from 1915 to 2013

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1149
Author(s):  
Guglielmo Puccio ◽  
Rosolino Ingraffia ◽  
Dario Giambalvo ◽  
Gaetano Amato ◽  
Alfonso S. Frenda

Identifying genotypes with a greater ability to absorb nitrogen (N) may be important to reducing N loss in the environment and improving the sustainability of agricultural systems. This study extends the knowledge of variability among wheat genotypes in terms of morphological or physiological root traits, N uptake under conditions of low soil N availability, and in the amount and rapidity of the use of N supplied with fertilizer. Nine genotypes of durum wheat were chosen for their different morpho-phenological characteristics and year of their release. The isotopic tracer 15N was used to measure the fertilizer N uptake efficiency. The results show that durum wheat breeding did not have univocal effects on the characteristics of the root system (weight, length, specific root length, etc.) or N uptake capacity. The differences in N uptake among the studied genotypes when grown in conditions of low N availability appear to be related more to differences in uptake efficiency per unit of weight and length of the root system than to differences in the morphological root traits. The differences among the genotypes in the speed and the ability to take advantage of the greater N availability, determined by N fertilization, appear to a certain extent to be related to the development of the root system and the photosynthesizing area. This study highlights some variability within the species in terms of the development, distribution, and efficiency of the root system, which suggests that there may be sufficient grounds for improving these traits with positive effects in terms of adaptability to difficult environments and resilience to climate change.

Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2444
Author(s):  
Federica Carucci ◽  
Giuseppe Gatta ◽  
Anna Gagliardi ◽  
Pasquale De Vita ◽  
Simone Bregaglio ◽  
...  

Organic farming systems are often constrained by limited soil nitrogen (N) availability. Here we evaluated the effect of foliar organic N and sulphur (S), and selenium (Se) application on durum wheat, considering N uptake, utilization efficiency (NUtE), grain yield, and protein concentration as target variables. Field trials were conducted in 2018 and 2019 on two old (Cappelli and old Saragolla) and two modern (Marco Aurelio and Nadif) Italian durum wheat varieties. Four organic fertilization strategies were evaluated, i.e., the control (CTR, dry blood meal at sowing), the application of foliar N (CTR + N) and S (CTR + S), and their joint use (CTR + NS). Furthermore, a foliar application of sodium selenate was evaluated. Three factors—variety, fertilization strategies and selenium application—were arranged in a split-split-plot design and tested in two growing seasons. The modern variety Marco Aurelio led to the highest NUtE and grain yield in both seasons. S and N applications had a positive synergic effect, especially under drought conditions, on pre-anthesis N uptake, N translocation, NUtE, and grain yield. Se treatment improved post-anthesis N uptake and NUtE, leading to 17% yield increase in the old variety Cappelli, and to 13% and 14% yield increase in Marco Aurelio and Nadif, mainly attributed to NUtE increase. This study demonstrated that the synergistic effect of foliar applications could improve organic durum wheat yields in Mediterranean environments, especially on modern varieties.


2019 ◽  
Vol 17 (04) ◽  
pp. 386-389
Author(s):  
Miguel Bento ◽  
Sónia Gomes Pereira ◽  
Wanda Viegas ◽  
Manuela Silva

AbstractAssessing durum wheat genomic diversity is crucial in a changing environmental particularly in the Mediterranean region where it is largely used to produce pasta. Durum wheat varieties cultivated in Portugal and previously assessed regarding thermotolerance ability were screened for the variability of coding sequences associated with technological traits and repetitive sequences. As expected, reduced variability was observed regarding low molecular weight glutenin subunits (LMW-GS) but a specific LMW-GS allelic form associated with improved pasta-making characteristics was absent in one variety. Contrastingly, molecular markers targeting repetitive elements like microsatellites and retrotransposons – Inter Simple Sequence Repeat (ISSR) and Inter Retrotransposons Amplified Polymorphism (IRAP) – disclosed significant inter and intra-varietal diversity. This high level of polymorphism was revealed by the 20 distinct ISSR/IRAP concatenated profiles observed among the 23 individuals analysed. Interestingly, median joining networks and PCoA analysis grouped individuals of the same variety and clustered varieties accordingly with geographical origin. Globally, this work demonstrates that durum wheat breeding strategies induced selection pressure for some relevant coding sequences while maintaining high levels of genomic variability in non-coding regions enriched in repetitive sequences.


2010 ◽  
Vol 61 (2) ◽  
pp. 153 ◽  
Author(s):  
M. K. Tan ◽  
A. P. Verbyla ◽  
B. R. Cullis ◽  
P. Martin ◽  
A. W. Milgate ◽  
...  

Late maturity α-amylase (LMA) in wheat is a defect where high-isoelectric point (pI) α-amylase accumulates in the ripening grain. Wheat genotypes vary in expression from zero to high levels of α-amylase, the latter with detrimental consequences on their use for value-added end products. Expression in each genotype is characterised by varying numbers of grains affected and different levels in each grain. Analysis of a doubled haploid (DH) population (188 lines) from WW1842 × Whistler has identified significant QTL on chromosomes 2DL, 3A, 3B, 3D, 4B, 4D, 5DS and 5BL. The 4B LMA allele (P < 0.0001) from Whistler is closely linked to the QTL for the ‘tall’ allele (P < 0.0001) of the Rht-B1 gene. The 4D LMA QTL (P < 0.0001) in WW1842 co-locates with the QTL for the ‘tall’ allele (P < 0.0001) of the Rht-D1 gene. This study has shown for the first time that a DH cross between two semi-dwarf cultivars with low or no LMA produces ~25% of progeny lines of the ‘tall’ genotypes with a high frequency of LMA. This is attributed to the large additive positive effects from the combination of one recessive ‘tall’ Rht-B1 gene and one recessive ‘tall’ Rht-D1 gene. High-yielding semi-dwarf genotypes with different combinations of Rht-B1 and Rht-D1 alleles which have very low or non-existent LMA expression (e.g. WW1842 and Whistler) may meet industry criteria for registration as commercial wheat varieties. However, when they are used as breeding lines, the cross produces some progeny genotypes with severe levels of LMA. These LMA genotypes comprise the gibberellic acid-sensitive ‘tall’ progenies and a very small proportion of semi-dwarfs. Thus, it is of paramount importance to screen the defect in wheat breeding programs. The suite of QTL identified for LMA will enable the use of marker assisted selection in the pyramiding of the beneficial QTL to maximise yield and minimise (or eliminate) LMA in semi-dwarf genotypes.


Author(s):  
Priscilla Glenn ◽  
Junli Zhang ◽  
Gina Brown-Guedira ◽  
Noah DeWitt ◽  
Jason P. Cook ◽  
...  

Abstract Key message We discovered a natural FT-A2 allele that increases grain number per spike in both pasta and bread wheat with limited effect on heading time. Abstract Increases in wheat grain yield are necessary to meet future global food demands. A previous study showed that loss-of-function mutations in FLOWERING LOCUS T2 (FT2) increase spikelet number per spike (SNS), an important grain yield component. However, these mutations were also associated with reduced fertility, offsetting the beneficial effect of the increases in SNS on grain number. Here, we report a natural mutation resulting in an aspartic acid to alanine change at position 10 (D10A) associated with significant increases in SNS and no negative effects on fertility. Using a high-density genetic map, we delimited the SNS candidate region to a 5.2-Mb region on chromosome 3AS including 28 genes. Among them, only FT-A2 showed a non-synonymous polymorphism (D10A) present in two different populations segregating for the SNS QTL on chromosome arm 3AS. These results, together with the known effect of the ft-A2 mutations on SNS, suggest that variation in FT-A2 is the most likely cause of the observed differences in SNS. We validated the positive effects of the A10 allele on SNS, grain number, and grain yield per spike in near-isogenic tetraploid wheat lines and in an hexaploid winter wheat population. The A10 allele is present at very low frequency in durum wheat and at much higher frequency in hexaploid wheat, particularly in winter and fall-planted spring varieties. These results suggest that the FT-A2 A10 allele may be particularly useful for improving grain yield in durum wheat and fall-planted common wheat varieties.


Author(s):  
Olivia H. Cousins ◽  
Trevor P. Garnett ◽  
Amanda Rasmussen ◽  
Sacha J. Mooney ◽  
Ronald J. Smernik ◽  
...  

AbstractDue to climate change, water availability will become increasingly variable, affecting nitrogen (N) availability. Therefore, we hypothesised watering frequency would have a greater impact on plant growth than quantity, affecting N availability, uptake and carbon allocation. We used a gravimetric platform, which measures the unit of volume per unit of time, to control soil moisture and precisely compare the impact of quantity and frequency of water under variable N levels. Two wheat genotypes (Kukri and Gladius) were used in a factorial glasshouse pot experiment, each with three N application rates (25, 75 and 150 mg N kg−1 soil) and five soil moisture regimes (changing water frequency or quantity). Previously documented drought tolerance, but high N use efficiency, of Gladius as compared to Kukri provides for potentially different responses to N and soil moisture content. Water use, biomass and soil N were measured. Both cultivars showed potential to adapt to variable watering, producing higher specific root lengths under low N coupled with reduced water and reduced watering frequency (48 h watering intervals), or wet/dry cycling. This affected mineral N uptake, with less soil N remaining under constant watering × high moisture, or 48 h watering intervals × high moisture. Soil N availability affected carbon allocation, demonstrated by both cultivars producing longer, deeper roots under low N. Reduced watering frequency decreased biomass more than reduced quantity for both cultivars. Less frequent watering had a more negative effect on plant growth compared to decreasing the quantity of water. Water variability resulted in differences in C allocation, with changes to root thickness even when root biomass remained the same across N treatments. The preferences identified in wheat for water consistency highlights an undeveloped opportunity for identifying root and shoot traits that may improve plant adaptability to moderate to extreme resource limitation, whilst potentially encouraging less water and nitrogen use.


2017 ◽  
Vol 44 (8) ◽  
pp. 832 ◽  
Author(s):  
Qianqian Guo ◽  
Jonathan Love ◽  
Jiancheng Song ◽  
Jessica Roche ◽  
Matthew H. Turnbull ◽  
...  

Root system architecture is the spatial arrangement of roots that impacts the capacity of plants to access nutrients and water. We employed pharmacologically generated morphological and molecular phenotypes and used in situ 15N isotope labelling, to investigate whether contrasting root traits are of functional interest in relation to nitrate acquisition. Brassica napus L. were grown in solidified phytogel culture media containing 1 mM KNO3 and treated with the cytokinin, 6-benzylaminopurine, the cytokinin antagonist, PI-55, or both in combination. The pharmacological treatments inhibited root elongation relative to the control. The contrasting root traits induced by PI-55 and 6-benzylaminopurine were strongly related to 15N uptake rate. Large root proliferation led to greater 15N cumulative uptake rather than greater 15N uptake efficiency per unit root length, due to a systemic response in the plant. This relationship was associated with changes in C and N resource distribution between the shoot and root, and in expression of BnNRT2.1, a nitrate transporter. The root : shoot biomass ratio was positively correlated with 15N cumulative uptake, suggesting the functional utility of root investment for nutrient acquisition. These results demonstrate that root proliferation in response to external nitrate is a behaviour which integrates local N availability and the systemic N status of the plant.


Agronomy ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 364 ◽  
Author(s):  
Martina Roselló ◽  
Conxita Royo ◽  
Miguel Sanchez-Garcia ◽  
Jose Miguel Soriano

Roots are crucial for adaptation to drought stress. However, phenotyping root systems is a difficult and time-consuming task due to the special feature of the traits in the process of being analyzed. Correlations between root system architecture (RSA) at the early stages of development and in adult plants have been reported. In this study, the seminal RSA was analysed on a collection of 160 durum wheat landraces from 21 Mediterranean countries and 18 modern cultivars. The landraces showed large variability in RSA, and differences in root traits were found between previously identified genetic subpopulations. Landraces from the eastern Mediterranean region, which is the driest and warmest within the Mediterranean Basin, showed the largest seminal root size in terms of root length, surface, and volume and the widest root angle, whereas landraces from eastern Balkan countries showed the lowest values. Correlations were found between RSA and yield-related traits in a very dry environment. The identification of molecular markers linked to the traits of interest detected 233 marker-trait associations for 10 RSA traits and grouped them in 82 genome regions named marker-train association quantitative trait loci (MTA-QTLs). Our results support the use of ancient local germplasm to widen the genetic background for root traits in breeding programs.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1299
Author(s):  
Silvia Pampana ◽  
Marco Mariotti

In nitrate vulnerable zones (NVZs), site-specific techniques are needed to match N availability with durum wheat (Triticum turgidum subsp. durum Desf.) requirements. Enhanced-efficiency fertilizers can improve efficient N supply and reduce leaching, contributing to sustainable agriculture. Two-year field experiments were carried out at two Mediterranean nitrate vulnerable zones in Central Italy (Pisa and Arezzo) to study the effects of nitrogen sources, timings, and application rates. The trial compared: (i) three N sources for the first topdressing application (urea, methylene urea, and urea with the nitrification inhibitor DMPP); (ii) two stages for the first topdressing N application (1st tiller visible—BBCH21 and 1st node detectable—BBCH31); (iii) two N rates: one based on the crop N requirements (Optimal—NO), the other based on action programme prescriptions of the two NVZs (Action Programme—NAP). Grain yield and yield components were determined, together with N uptake. The results showed that: (i) grain and biomass production were reduced with NAP at both locations; (ii) urea performed better than slow-release fertilizers; (iii) the best application time depended on the N source and location: in Pisa, enhanced-efficiency fertilizers achieved higher yields when applied earliest, while for urea the opposite was true; in Arezzo different N fertilizers showed similar performances between the two application timings. Different behaviors of topdressing fertilizers at the two localities could be related to the diverse patterns of temperatures and rainfall. Thus, optimal fertilization strategies would seem to vary according to environmental conditions.


2021 ◽  
Vol 9 (2) ◽  
pp. 65-70
Author(s):  
Seydi Aydogan ◽  
Aysun Gocmen Akcacik

This research was carried out in order to determine some chemical, physical and rheological (mixograph) traits of 4 standard durum wheat varieties and 11 durum wheat lines in 2015-2016 under irrigated conditions in Gözlü and Central location of Konya according to randomized block design with three replications. Means of quality parameters varied for thousand kernel weight (30.26-38.45 g), protein ratio (12.94-14.77%), SDS sedimentation (13.75-29.75 ml), color (b value) (20.45-23.35), mixograph development time (1.55-3.79 min), peak height (46.47-81.38%), softening (slope) (6.46-28.85 min/%), peak width (2.19-15.13%), peak area (54-165 Nm) and total area (energy) (236-407 Nm). Significant differences were found between wheat varieties in terms of examined features. Durum wheat lines having weak, strong and very strong gluten were identified in this research. Keywords: Wheat breeding, landraces, genetic structure, semolina, dough traits, gluten index, mixograph parameters.


Sign in / Sign up

Export Citation Format

Share Document