Interaction of Candida albicans with Fluconazole/ Clotrimazole: Effect on Hyphae Formation and Expression of Hyphal Wall Protein 1

Author(s):  
Sakineh Jam Shahriari ◽  
Fahimeh Alizadeh ◽  
Alireza Khodavandi

Background and Aims: Candida albicans (C. albicans) is the most common opportunistic human pathogen. Therapeutic options for Candida infections are limited to available antifungal drugs. The aim of this study was to investigate the effects of fluconazole/clotrimazole (FLU/CLT) on C. albicans hyphae formation. Materials and Methods: We have established the effectiveness of the combination of FLU/CLT on C. albicans hyphae formation. Interaction of C. albicans with combination of FLU/CLT was performed using the CLSI guidelines and time-killing curves. We investigated the anti-hyphal activities of combination of FLU/CLT against C. albicans using XTT and crystal violet assays as well as scanning electron microscopy and expression of HWP1 gene. Results: The interaction of C. albicans with FLU/CLT resulted in synergistic, partial synergistic and indifferent effects. The interaction of FLU/CLT were confirmed by time-killing curves. FLU/CLT combined resulted in the reduction of metabolic activity and hyphae formation in C. albicans. Images taken by scanning electron microscopy indicated the effectiveness on hyphae disruption. According to relative real time polymerase chain reaction analysis, the mean Ct values revealed the significant decrease in expression level of the HWP1 gene. A 2.86- and 2.33-fold decrease in HWP1 gene expression was observed in combination of FLU/CLT treatment at 2× minimum inhibitory concentration and 1× minimum inhibitory concentration, respectively (p=0.002). Conclusions: We confirmed that the hyphae is a target for the combination of FLU/CLT in C. albicans. HWP1 gene is likely to be considered as a probable targets synergistic interaction of FLU/CLT against C. albicans.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Agostinho Alves de Lima e Silva ◽  
Alice Slotfeldt Viana ◽  
Priscila Martins Silva ◽  
Eduardo de Matos Nogueira ◽  
Leonardo Tavares Salgado ◽  
...  

Staphylococcus aureus is a pathogen commonly resistant to antibiotics. Biofilm formation is one of the important factors related to its virulence. Non-antibiotics drugs, such as nonsteroidal anti-inflammatory agents (NSAIDs), have been studied as an alternative for treating infections by multiresistant pathogens and biofilm-associated infections. In this study, the effects of NSAID sodium diclofenac on growth inhibition and biofilm formation of S. aureus were evaluated. The minimum inhibitory concentration (MIC) of diclofenac for fifty isolates ranged from 200 to 400 μg/mL. Diclofenac sub-MICs induced biofilm in 32.3% of biofilm-negative strains in tryptic soy broth. All biofilms induced by the drug showed a PIA- (polysaccharide intercellular adhesion-) independent composition, and the scanning electron microscopy showed that the induced biofilm presented a very discrete matrix. The combination of diclofenac with rifampicin sub-MICs induced strong production of PIA-dependent biofilm in three of four strains, while combination of NSAID with NaCl induced the formation of partially polysaccharide biofilm in two strains and PIA-independent biofilm in another strain. The combination of NSAID with glucose resulted in PIA-independent biofilms in all four strains tested. The results showed that diclofenac can commonly induce biofilm production by a PIA-independent pathway. However, when this NSAID is combined with other types of inducing agents, the composition of the biofilm produced may vary.


1985 ◽  
Vol 40 (7-8) ◽  
pp. 539-550 ◽  
Author(s):  
Margarete Borg

Abstract The labeling of immunocomplexes for scanning electron microscopy (SEM) is a fairly new technique, and the various procedures, that have been proposed, have not yet been compared. Such comparative evaluation was performed with Candida protease as a target antigen. This secretory enzyme of the opportunistic yeast Candida albicans can be localized on the surface of fungal blastopores and mycelia, both after growth in proteinaceous medium and upon infection of murine peritoneal macrophages. The presence of the protease antigen was confirmed by immunofluorescence and by immunoperoxidase-light microscopy. The decoration of protease - anti protease complexes for SEM was attempted with colloids derived from the immunoperoxidase reaction, by the immunogold technique, and by antibodies linked to beads of synthetic polymers (polystyrene, polymethacrylate, polyacrolein). In addition, inactivated Staphylococcus aureus was used, which binds to antibodies through its protein-A. The high resolution by SEM of surface structures was matched only by the colloid based decoration techniques. All conjugates with beads suffered from inconsistent binding, which did not correspond with the distribution of the surface antigen. The comparatively best result with beads was obtained with polystyrene (Latex). Colloid based techniques in addition allow for critical point drying, which cannot be applied to synthetic beads in the usual manner.


2019 ◽  
Vol 64 (5) ◽  
pp. 308-313 ◽  
Author(s):  
M. G. Chesnokova ◽  
V. A. Chesnokov ◽  
A. Yu. Mironov

The most common pathology in the clinic of orthopedic dentistry is the presence of partial adentia in patients, manifested in the form of defects of dentition of various localization and length. Removable orthopedic structures in the oral cavity are a potential place for adhesion and colonization of microorganisms. The aim of the research was to study Candida albicans biofilms on the surface of base plastics of removable orthopedic structures using scanning electron microscopy. 175 cultures of C. albicans were isolated and identified from the oral mucosa of patients at various stages of orthopedic rehabilitation. When studying the surface of samples of plastics of hot and cold type polymerization and Candida biofilms using a JEOL JCM 5700 scanning electron microscope (JEOL, Japan), features of biofilm formation were established. An assessment of the nature of the manifestation of the hemagglutinating activity of clinical strains of Candida fungi in the hemagglutination test with human erythrocytes I (O), II (A) of the human and guinea pig blood groups was carried out. The total number of hemagglutinating strains was 37.14%, with the prevalence of the proportion of manna-resistant (MRHA) cultures - 23.43% of cases. Micrographs of the C. albicans yeast-like biofilm biofilm were obtained on the surface of hot and cold-type plastics in incubation dynamics. Scanning electron microscopy revealed the most pronounced changes in the surface of hot plastics of polymerization compared to cold plastics with long incubation of C. albicans, which characterize the loosening of plastics and the appearance of cracks on the surface, and the cracking of a yeast-like fungus biofilm was noted.


F1000Research ◽  
2020 ◽  
Vol 8 ◽  
pp. 1923
Author(s):  
Siska Septiana ◽  
Boy Muchlis Bachtiar ◽  
Nancy Dewi Yuliana ◽  
Christofora Hanny Wijaya

Background: Cajuputs candy (CC), an Indonesian functional food, utilizes the bioactivity of Melaleuca cajuputi essential oil (MCEO) to maintain oral cavity health. Synergistic interaction between Candida albicans and Streptococcus mutans is a crucial step in the pathogenesis of early childhood caries. Our recent study revealed several alternative MCEOs as the main flavors in CC. The capacity of CC to interfere with the fungus-bacterium relationship remains unknown. This study aimed to evaluate CC efficacy to impair biofilm formation by these dual cariogenic microbes. Methods: The inhibition capacity of CC against mixed-biofilm comprising C. albicans and S. mutans was assessed by quantitative (crystal violet assay, tetrazolium salt [MTT] assay, colony forming unit/mL counting, biofilm-related gene expression) and qualitative analysis (light microscopy and scanning electron microscopy). Result: Both biofilm-biomass and viable cells were significantly reduced in the presence of CC. Scanning electron microscopy imaging confirmed this inhibition capacity, demonstrating morphology alteration of C. albicans, along with reduced microcolonies of S. mutans in the biofilm mass. This finding was related to the transcription level of selected biofilm-associated genes, expressed either by C. albicans or S. mutans. Based on qPCR results, CC could interfere with the transition of C. albicans yeast form to the hyphal form, while it suppressed insoluble glucan production by S. mutans. G2 derived from Mojokerto MCEO showed the greatest inhibition activity on the relationship between these cross-kingdom oral microorganisms (p < 0.05). Conclusion: In general, all CC formulas showed biofilm inhibition capacity. Candy derived from Mojokerto MCEO showed the greatest capacity to maintain the yeast form of C. albicans and to inhibit extracellular polysaccharide production by S. mutans. Therefore, the development of dual-species biofilms can be impaired effectively by the CC tested.


2019 ◽  
Vol 75 (4) ◽  
pp. 925-935 ◽  
Author(s):  
Farhana Alam ◽  
Dominic Catlow ◽  
Alessandro Di Maio ◽  
Jessica M A Blair ◽  
Rebecca A Hall

Abstract Background Pseudomonas aeruginosa is an opportunistic bacterium that infects the airways of cystic fibrosis patients, surfaces of surgical and burn wounds, and indwelling medical devices. Patients are prone to secondary fungal infections, with Candida albicans being commonly co-isolated with P. aeruginosa. Both P. aeruginosa and C. albicans are able to form extensive biofilms on the surfaces of mucosa and medical devices. Objectives To determine whether the presence of C. albicans enhances antibiotic tolerance of P. aeruginosa in a dual-species biofilm. Methods Single- and dual-species biofilms were established in microtitre plates and the survival of each species was measured following treatment with clinically relevant antibiotics. Scanning electron microscopy and confocal microscopy were used to visualize biofilm structure. Results C. albicans enhances P. aeruginosa biofilm tolerance to meropenem at the clinically relevant concentration of 5 mg/L. This effect is specific to biofilm cultures and is dependent upon C. albicans extracellular matrix polysaccharides, mannan and glucan, with C. albicans cells deficient in glycosylation structures not enhancing P. aeruginosa tolerance to meropenem. Conclusions We propose that fungal mannan and glucan secreted into the extracellular matrix of P. aeruginosa/C. albicans dual-species biofilms play a central role in enhancing P. aeruginosa tolerance to meropenem, which has direct implications for the treatment of coinfected patients.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 1923 ◽  
Author(s):  
Siska Septiana ◽  
Boy Muchlis Bachtiar ◽  
Nancy Dewi Yuliana ◽  
Christofora Hanny Wijaya

Background: Cajuputs candy (CC), an Indonesian functional food, utilizes the bioactivity of Melaleuca cajuputi essential oil (MCEO) to maintain oral cavity health. Synergistic interaction between Candida albicans and Streptococcus mutans is a crucial step in the pathogenesis of early childhood caries. Our recent study revealed several alternative MCEOs as the main flavors in CC. The capacity of CC to interfere with the fungus-bacterium relationship remains unknown. This study aimed to evaluate CC efficacy to impair biofilm formation by these dual cariogenic microbes. Methods: The inhibition capacity of CC against mixed-biofilm comprising C. albicans and S. mutans was assessed by quantitative (crystal violet assay, tetrazolium salt [MTT] assay, colony forming unit/mL counting, biofilm-related gene expression) and qualitative analysis (light microscopy and scanning electron microscopy). Result: Both biofilm-biomass and viable cells were significantly reduced in the presence of CC. Scanning electron microscopy imaging confirmed this inhibition capacity, demonstrating morphology alteration of C. albicans, along with reduced microcolonies of S. mutans in the biofilm mass. This finding was related to the transcription level of selected biofilm-associated genes, expressed either by C. albicans or S. mutans. Based on qPCR results, CC could interfere with the transition of C. albicans yeast form to the hyphal form, while it suppressed insoluble glucan production by S. mutans. G2 derived from Mojokerto MCEO showed the greatest inhibition activity on the relationship between these cross-kingdom oral microorganisms (p < 0.05). Conclusion: In general, all CC formulas showed biofilm inhibition capacity. Candy derived from Mojokerto MCEO showed the greatest capacity to maintain the commensal form of C. albicans and to inhibit extracellular polysaccharide production by S. mutans. Therefore, the development of dual-species biofilms can be impaired effectively by the CC tested.


2021 ◽  
Author(s):  
Yazhou Wang ◽  
Huiling Liu

AbstractCandida albicans infection mainly occurs in patients with suppressed immune function, and it is also the main pathogen of hospital infection. The new strategies are needed to treat the existing resistance of antifungal drugs. The use of natural products aimed at controlling fungal diseases is considered an interesting alternative to synthetic fungicides due to their lower adverse reactions, lower cost to plant preparations compared to modern conventional pharmaceuticals. Natural borneol has a long history of treating ulcers and local infections. In this study, the minimum inhibitory concentration of natural borneol on ATCC10231 and 10 clinically isolated Candida albicans was determined by vapor phase method and dilution method, and the influence of sub-minimum inhibitory concentration on the formation of Candida albicans hyphae was observed. We found that the minimum inhibitory concentration of ATCC10231 and 10 clinically the isolates in the vapor phase were both 0.4 mg/cm3, agar and broth dilution methods were 2 mg/mL. The vapor phase of natural borneol has a better inhibitory effect on Candida albicans, Sub-mic concentration of borneol (0.125-1mg/ml) in the liquid phase inhibits the 60%-99% formation of Candida albicans germ tube. Natural borneol is a potential natural medicine for the treatment and prevention of Candida albicans infection. It brings new insights into the development of novel effective antifungal drugs.


2016 ◽  
Vol 43 (1) ◽  
pp. 5-13
Author(s):  
N. Stamenov ◽  
G. Tomov ◽  
Z. Denkova ◽  
I. Dobrev

SummaryOral/perioral piercing may provide an ideal environment for adhesion and colonization of microorganisms. The aim of this study is to perform an “in vitro” research on the capabilities of adhesion of Candida albicans on oral piercings made of plastic and metal. Acrylic and metal piercings were incubated with Candida albicans and then were observed using scanning electron microscopy under different magnifications. A lot of irregularities and roughness were observed on the surface of the plastic piercing unlike the surface of the metal one, which is not so rough. Nevertheless, the number of Candida albicans colonies was considerably larger on the scanned metal surface in comparison to the plastic surface. In vitro the metal surface of the piercing creates better environment for the adhesion and colonization of microorganisms than the acrylic. This could be attributed to the electrostatic forces that most likely attract Candida albicans to the metal piercing in the early stages of biofilm formation.


Sign in / Sign up

Export Citation Format

Share Document