scholarly journals Arquitectura Inteligente CPPS Integrada en el Uso de la Norma IEC-61499, con Bloque de Funciones Altamente Adaptables en la Industria 4.0

2018 ◽  
Vol 3 (1) ◽  
pp. 502
Author(s):  
Félix M. Murillo ◽  
Darío J. Díaz

Today, we are experiencing what it is being labelled as the Fourth Industrial Revolution (Industry 4.0) in terms of automation and control systems of cyber - physical production environments. These systems not only allow access to many innovative features based on network connections, but they also provide access to the world of the Internet of Things (IoT).  It is in this context that IoT changes the ways to link new technologies in order to obtain more efficient, intelligent, flexible and adaptable production systems; thus becoming an interdependence of the product itself that the companies wish to commercialize. Cyber- Physical Production Systems (CPPS) have the advantages of granular communications, common electric bandwidth for all users regardless of data speeds, compatibility in connection with free or guided space communication links and with the major compatibility with intensity modulation. IEC 61499 is generally based on a generic architecture, with specific software requirements, development rules that allow for portability and device configuration.Keywords: IoT, configuration, communication, CPPS, Industry 4.0, smart.

2020 ◽  
Vol 25 (3) ◽  
pp. 505-525 ◽  
Author(s):  
Seeram Ramakrishna ◽  
Alfred Ngowi ◽  
Henk De Jager ◽  
Bankole O. Awuzie

Growing consumerism and population worldwide raises concerns about society’s sustainability aspirations. This has led to calls for concerted efforts to shift from the linear economy to a circular economy (CE), which are gaining momentum globally. CE approaches lead to a zero-waste scenario of economic growth and sustainable development. These approaches are based on semi-scientific and empirical concepts with technologies enabling 3Rs (reduce, reuse, recycle) and 6Rs (reuse, recycle, redesign, remanufacture, reduce, recover). Studies estimate that the transition to a CE would save the world in excess of a trillion dollars annually while creating new jobs, business opportunities and economic growth. The emerging industrial revolution will enhance the symbiotic pursuit of new technologies and CE to transform extant production systems and business models for sustainability. This article examines the trends, availability and readiness of fourth industrial revolution (4IR or industry 4.0) technologies (for example, Internet of Things [IoT], artificial intelligence [AI] and nanotechnology) to support and promote CE transitions within the higher education institutional context. Furthermore, it elucidates the role of universities as living laboratories for experimenting the utility of industry 4.0 technologies in driving the shift towards CE futures. The article concludes that universities should play a pivotal role in engendering CE transitions.


Author(s):  
İsmail Yıldırım

Industry 4.0 defines the fourth industrial revolution, a new level in the organization and management of products and production systems. This cycle consists of services that include the entire chain, including individualized customer requests, product development, production order, distribution, and recycling to the end user. One of the most important preconditions for the realization of the Industry 4.0 revolution is that companies have completed their digital transformations. New technologies and digitalization have brought a new understanding of insurance. Insurance companies are focused on four areas such as big data, artificial intelligence, internet of objects, and blockchain in the changing world. With the changing habits of consumers in their daily lives, new generation insurance needs emerged. The introduction of a new era shaped by the insurance industry with new products, services, competitors, and customer expectations will have various effects. This chapter describes how Industry 4.0 transforms the insurance sector.


Author(s):  
Thomas Strasser ◽  
Alois Zoitl ◽  
Martijn Rooker

Future manufacturing is envisioned to be highly flexible and adaptable. New technologies for efficient engineering of reconfigurable systems and their adaptations are preconditions for this vision. Without such solutions, engineering adaptations of Industrial Process Measurement and Control Systems (IPMCS) will exceed the costs of engineered systems by far and the reuse of equipment will become inefficient. Especially the reconfiguration of control applications is not sufficiently solved by state-of-the-art technology. This chapter gives an overview of the use of reconfiguration applications for zero-downtime system reconfiguration of control applications on basis of the standard IEC 61499 which provides a reference model for distributed and reconfigurable control systems. A new approach for the reconfiguration of IEC 61499 based control application and the corresponding modeling is discussed. This new method significantly increases engineering efficiency and reuse in component-based IPMCS.


Author(s):  
İsmail Yıldırım

Industry 4.0 defines the fourth industrial revolution, a new level in the organization and management of products and production systems. This cycle consists of services that include the entire chain, including individualized customer requests, product development, production order, distribution, and recycling to the end user. One of the most important preconditions for the realization of the Industry 4.0 revolution is that companies have completed their digital transformations. New technologies and digitalization have brought a new understanding of insurance. Insurance companies are focused on four areas such as big data, artificial intelligence, internet of objects, and blockchain in the changing world. With the changing habits of consumers in their daily lives, new generation insurance needs emerged. The introduction of a new era shaped by the insurance industry with new products, services, competitors, and customer expectations will have various effects. This chapter describes how Industry 4.0 transforms the insurance sector.


2021 ◽  
Author(s):  
Daniel Ribeiro ◽  
António Almeida ◽  
Américo Azevedo ◽  
Filipe Ferreira

We live in a world where companies are shifting to the industry 4.0 paradigm. One of the pillars of Industry 4.0 is the digitalization of physical assets and manufacturing processes, moving toward the Cyber-Physical Production Systems concept (CPPS). In these systems, every component of the production process – machines, tools, workstations, etc. – is equipped with sensors, possesses information about itself, and can interact with each other, allowing the production of smaller batches at lower prices and increase product customization through adaptative processes. Consequently, companies are evolving their information systems to have more visibility and control over their production systems. This change increases both the production system’s agility and its vulnerability to communication and information related disruptions. Hence, companies that adhere to Industry 4.0 enabling technologies must adopt new methodologies and tools to become aware of the new risks that arise by the introduction of new digital platforms, their impacts in the production systems, and how they may react to remain resilient. In this paper, disruption events and adequate mitigation strategies are analysed, modelled, and simulated as part of a methodology designed to measure the impacts of disruptive events on the production system.


2019 ◽  
Vol 9 (14) ◽  
pp. 2934 ◽  
Author(s):  
Jon Kepa Gerrikagoitia ◽  
Gorka Unamuno ◽  
Elena Urkia ◽  
Ainhoa Serna

The fourth industrial revolution is characterized by the introduction of the Internet of things (IoT) and Internet of Services (IoS) concepts into manufacturing, which enables smart factories with vertically and horizontally integrated production systems. The main driver is technology, as Industry 4.0 is a collective term for technologies and concepts of value chain organization. Digital manufacturing platforms play an increasing role in dealing with competitive pressures and incorporating new technologies, applications, and services. Motivated by the difficulties to understand and adopt Industry 4.0 and the momentum that the topic has currently, this paper reviews the concepts and approaches related to digital manufacturing platforms from different perspectives: IoT platforms, digital manufacturing platforms, digital platforms as ecosystems, digital platforms from research and development perspective, and digital platform from industrial equipment suppliers.


2012 ◽  
pp. 2024-2051
Author(s):  
Thomas Strasser ◽  
Alois Zoitl ◽  
Martijn Rooker

Future manufacturing is envisioned to be highly flexible and adaptable. New technologies for efficient engineering of reconfigurable systems and their adaptations are preconditions for this vision. Without such solutions, engineering adaptations of Industrial Process Measurement and Control Systems (IPMCS) will exceed the costs of engineered systems by far and the reuse of equipment will become inefficient. Especially the reconfiguration of control applications is not sufficiently solved by state-of-the-art technology. This chapter gives an overview of the use of reconfiguration applications for zero-downtime system reconfiguration of control applications on basis of the standard IEC 61499 which provides a reference model for distributed and reconfigurable control systems. A new approach for the reconfiguration of IEC 61499 based control application and the corresponding modeling is discussed. This new method significantly increases engineering efficiency and reuse in component-based IPMCS.


2021 ◽  
Vol 11 (23) ◽  
pp. 11112
Author(s):  
Marcel Groten ◽  
Sergio Gallego-García

The industrial revolutions and their impact on production systems have increased productivity and quality in manufacturing over time. Lean methods have been the driver of the development of production systems from the 1990s to the rise of the fourth industrial revolution, or Industry 4.0. However, many different approaches and methodologies have been described, applied, and discussed for achieving improvements in production systems. As a result, organizations are often confused in regard to the order, the convenience, and the outcomes intended by the different improvement strategies and techniques. This paper provides a systematic sequence of process optimization steps that can be applied to any organization. A conceptual model was built based on the systematic sequence. In addition, a simulation model was built with the goal of representing and quantifying the sequential steps of the conceptual model. The results of the simulation model show a clear improvement in quality, performance, and economic indicators, with the first two steps in the optimization sequence providing critical initial information, while the third step served as a net contributor to a global production system improvement for demanding market scenarios. Finally, we analyzed the impacts of Industry 4.0 on production systems and developed a methodological sequence to design, select, implement, and control projects, even those that include Industry 4.0 technologies.


Author(s):  
Guido Vinci Carlavan ◽  
Daniel Alejandro Rossit

Industry 4.0 proposes the incorporation of information technologies at all levels of the production process. By incorporating these technologies, Industry 4.0 provides new tools for production planning processes, allowing to address problems in an innovative and efficient manner. From these technologies and tools, it is that in this work a One-of-a-Kind Production (OKP) process is approached, where the products tend to be highly customized. OKP implies working with a very large variability within production, demanding very efficient planning systems. For this, a planning model based on CONWIP-type strategies was proposed, which seeks to level the production of a shop floor configured in the form of a job shop. Even more, for having a more realistic shop-floor representation, machine failures have been included in the model. In turn, different dispatching rules were proposed to study the performance and analyze the behaviour of the system. From the results obtained, it is observed that, when the production demand is very exigent in relation with the capacity of the system, the dispatching rules that analyze the workload generated by each job tend to perform better. However, when the demand on the capacity of the production system is less intense, the rules associated with due dates are the ones that obtain the best results.


Sign in / Sign up

Export Citation Format

Share Document