Soil Classification and Suitable Crop Yield Prediction Using Support Vector Machine

Author(s):  
Shivaputra S.Panchal ◽  
◽  
Laxmi Sharma
2021 ◽  
Vol 11 (2) ◽  
pp. 2142-2155
Author(s):  
D. Jayakumar ◽  
S. Srinivasan ◽  
P. Prithi ◽  
Sreelekha Vemula ◽  
Narashena Sri

Yield forecasting is based totally entirely on soil, water and vegetation to be a possible subject. Deep-based depth-based fashions are widely accustomed extract important plant functions for predictive purposes. Although such strategies are necessary to resolve the matter of predicting yields there are the subsequent abnormalities: they can't create an indirect or indirect map between raw facts and yield values; and also the full functionality of this excess is explained within the high satisfaction of the published works. Deep durability provides guidance and motivation for the above-mentioned errors. Combining master intensity and deep mastering, deep reinforcing mastering creates a comprehensive yield prediction framework which will plan the uncooked facts in crop prediction rates. The proposed project creates a version of the Deep Recurrent Q-Network Support Vector Machine deep mastering set of rules over Q-Learning to strengthen the mastering set of rules for predicting yield. Sequential downloads of the Recurrent Neural community are fed by fact parameters. The Q-mastering community creates a predictive yield environment based totally on input criteria. The precise layer displays the discharge values of the Support Vector Machine on the Q values. The reinforcement master component contains a mix of parametric functions on the sting that helps predict the yield. Finally, the agent obtains a measure of the mixture of steps performed by minimizing the error and increasing the accuracy of the forecast. The proposed model successfully predicts this crop yield that's hip by keeping the initial distribution of facts with 93.7% accuracy.


2020 ◽  
Vol 8 (5) ◽  
pp. 3516-3520

The main objective of this research is to predict crop yields based on cultivation area, Rainfall and maximum and minimum temperature data. It will help our Indian farmers to predict crop yielding according to the environment conditions. Nowadays, Machine learning based crop yield prediction is very popular than the traditional models because of its accuracy. In this paper, linear regression, Support Vector Regression, Decision Tree and Random forest is compared with XG Boost algorithm. The above mentioned algorithms are compared based on R2 , Minimum Square Error and Minimum Absolute Error. The dataset is prepared from the data.gov.in site for the year from 2000 to 2014. The data for 4 south Indian states Andhra Pradesh, Karnataka, Tamil Nadu and Kerala data alone is taken since all these states has same climatic conditions. The proposed model in this paper based on XG Boost is showing much better results than other models. In XG Boost R2 is 0.9391 which is the best when compared with other models.


2020 ◽  
Vol 8 (9) ◽  
pp. 6-11
Author(s):  
Vijay E V ◽  
Navya Ch ◽  
Abdul Shabana Begum ◽  
Rajaneesh D ◽  
Mahesh Babu B

Author(s):  
G Sudha Sadasivam

Agriculture is the backbone of the Indian economy. Farming is a major source of income for many people in developing countries. Prediction of yield of crops is desirable as it can predict the income and minimise losses for the farmersunder unfavorable conditions. But predicting crop yield is a challenging task in developing countries like India. Conventionally, crop yield prediction is done using farmer’s expertise. The sustainability and productivity of a crop growing area are dependent on suitable climatic, soil, and biological conditions. So, data mining techniques based on neural networks, Neuro-Fuzzy Inference Systems, Fuzzy Logic, SMO, and Multi Linear Regression can be used for prediction. Previous work has performed yield prediction based on crop models considering only some of the environmental factors. This work uses a Support Vector Machine (SVM) to predict the crop yield under different environmental conditions that include soil, climate, and biological factors. Applying granular computing enables dividing the problem space into a sequence of subtasks. So, the hyperplane construction of SVM can be parallelized by splitting the problem space. Testing can also be parallelized. The main advantage is that linear SVM can be used to handle higher dimension space. Time complexity is reduced. Prediction using granular SVM can be parallelized using appropriate techniques like MapReduce/GPGPU. IoT-based agriculture increases crop yield by accurate prediction, automation, remote monitoring, and reducing wastage of resources. IoT-based monitoring systems can be used by farmers, researchers, and government officials to analyze crop environments and statistical information to predict crop yield. This paper proposes an IoT-based system to predict crop yield based on climatic, soil, and biological factors using parallelized granular support vector machines.


Sign in / Sign up

Export Citation Format

Share Document