scholarly journals Real-Time Environmental Gamma Radiation Dose Rate Measurement around Major Nuclear and Radiological Facilities in Bangladesh

Author(s):  
Sidratul Moontaha ◽  
Dr. Mohammad Sohelur Rahman ◽  
Dr. Md. Shafiqul Islam ◽  
Selina Yeasmin

Background: In this study, outdoor environmental gamma radiation dose rates were measured at area of Shahbag Thana under Dhaka city and Atomic Energy Research Establishment (AERE) Campus at Savar. Aim of the study: This kind of study is required to detect the presence of natural and artificial radionuclides (if any) releasing from nuclear and radiological facilities in the country or from neighbouring countries. Materials and Methods: The measurement was performed using a real-time portable radiation monitoring device from August-November 2017. The real-time portable radiation monitoring device was placed on tripod at 1 meter above the ground and data acquisition time for each monitoring point (MP) was 1 hour. Total 34 MP were selected around major nuclear and radiological facilities in Bangladesh for collection of dose rate due to gamma-ray. The MPs were marked-out using Global Positioning System (GPS) navigation. The GPS reading of the sampling locations were varied from E90º23'40.08" to E90º24'32.82" and from N23º44'58.62" to N23º43'26.58" for Shahbag Thana and from E90º16'26.58" to E90º16'50.52" and from N23º57'12.96" to N23º57'6.12" for AERE Campus, Savar. Results: The measured dose rates due to natural radionuclides were ranged from 0.105 ± 0.036056 μSv.h-1 to 0.208065 ± 0.106377μSv.h-1 with an average of 0.141568 ± 0.046995 μSv.h-1. The annual effective dose to the population from outdoor environmental gamma radiation was varied from 0.128772 ± 0.044218 mSv to 0.25517 ± 0.130461 mSv and the mean was found to be 0.17362± 0.057635 mSv. This value is lower than some countries like India, China, Sweden, Italy and Czech Republic; and higher than Canada, Mexico, Indonesia, Korea, Turkey, Finland, Spain and some other countries. Conclusion: From this study, it was observed that there is no burden of population exposure due to man-made sources. Therefore, it can be concluded that adequate safety and radiation protection of nuclear & radiological facilities had been ensured which is required for minimizing of unnecessary exposure to populations from man-made sources. The estimated mean annual effective dose found in this study is not expected to contribute significant additional hazard from the radiological health point of view.

2021 ◽  
Vol 9 (2) ◽  
pp. 32-40
Author(s):  
Abdullah Tareque ◽  
Suranjan Kumar Das ◽  
Mohammad Sohelur Rahman ◽  
Selina Yeasmin

Objective: Ionizing radiation is extensively used in the hospital for diagnosis and treatment procedures to patients and its usage increasing day by day with the socio-economic development of the country. The aim of the study is to monitor the real-time radiation around the Bangabandhu Sheikh Mujib Medical University (BSMMU) hospital campus and estimation of the radiation risk on public. Method: The real-time radiation monitoring around the BSMMU hospital campus was performed using digital portable radiation monitoring device (DPRMD). The DPRMD meets all European CE standards and the American “FCC 15 standard”. The DPRMD was placed at 1 meter above the ground on tripod and data taking time for each monitoring point (MP) was 1 hour. Each MP was identified using Garmin eTrex GPS device. 32 MPs were selected for taking the real-time radiation dose rates around the BSMMU hospital campus from August-September 2019. Results: The real-time radiation dose rates around the BSMMU hospital campus were ranged from 0.020-2.45 µSv/hr with an average of 0.211 ± 0.094 µSv/hr. The annual effective dose on public were ranged from 0.222 ± 0.052 mSv to 1.247 ± 0.071 mSv with an average of 0.368 ± 0.097 mSv. The excess life-time cancer risk (ELCR) on public was estimated based on the annual effective dose that ranged from 0.881×10-3 to 5.12×10-3 with an average value of 1.488×10-3 around the BSMMU hospital campus, which means that in every thousand people, one person is at the risk of developing cancer caused by the scattered radiation exposure from the hospital. Conclusion: Real-time radiation monitoring makes possible to ensure the protection the radiation worker and the public from unnecessary radiation hazard. The study also provides the instantaneous information of inappropriate operation of radiation generating equipments and improper handling of radioactive substances in the hospital.


2021 ◽  
Vol 9 (1) ◽  
pp. 15-22
Author(s):  
Abdullah Al Shuhan ◽  
Mohammad Sohelur Rahman ◽  
Selina Yeasmin ◽  
Md. Kabir Uddin Sikder

Objective: Ionizing radiation is widely used in the hospital for diagnostic and therapeutic procedures to patients and its usage increasing day by day. The aim of the study is to monitor the real-time radiation around the Shaheed Suhrawardy Medical College (ShSMC) hospital campus and estimation of radiation risk on public. Method: The real-time radiation monitoring around the ShSMC hospital was performed using digital portable radiation monitoring device (DPRMD). The DPRMD meets all European CE standards and the American “FCC 15 standard”. The DPRMD was placed at 1 meter above the ground on tripod and data collection time for each monitoring point (MP) was 1 hour. Each MP was marked out using Garmin eTrex GPS device. 32 MPs were chosen for collection of the real-time radiation dose rates around the ShSMC hospital campus in October 2020. Results: The real-time radiation dose rates around the ShSMC hospital campus were ranged from 0.37-3.39 µSv/hr with an average of 1.537 ± 0.359 µSv/hr. The annual effective dose on public were ranged from 1.326 ± 0.551 mSv to 4.902 ± 0.705 mSv with an average of 2.694 ± 0.629 mSv. The excess life-time cancer risk (ELCR) on public health was estimated based on the annual effective dose that ranged from 5.277×10ˆ-3 to 19.503×10ˆ-3 with an average value of 10.72×10ˆ-3 around the ShSMC hospital campus. Conclusion: Real-time radiation monitoring facilitates to ensure the safety of the radiation workers and the public from undue radiation hazard. The study also gives instant information of improper operation of radiation generating equipments and improper handling of radioactive substances in the hospital.


2021 ◽  
Vol 9 (1) ◽  
pp. 23-31
Author(s):  
Mohammed Belayet Hossain ◽  
Dr. Mohammad Sohelur Rahman ◽  
Dr. Mohammad Amir Hossain Bhuiyan ◽  
Selina Yeasmin

Objective: The pollution free environment is required for healthy life. The real-time radiation monitoring is very important for radiation hazard detection in the environment. The excess life-time cancer risk (ELCR) on public is to assess based on the real-time radiation monitoring data in the area. Methods: The real-time radiation monitoring was performed using portable digital radiation monitoring device. This real-time digital portable radiation monitoring device meets all European CE standards as well as the American “FCC 15 standard”. The real-time digital portable radiation monitoring device was placed at 1 meter above the ground on tripod and data collection time for each monitoring point (MP) was 1 hour. 27 MPs were chosen for collection of real-time radiation data at various outdoor environment in Motijheel Thana, Dhaka from May-August 2018.Results: The real-time radiation dose rates at Motijheel Thana due to natural radionuclides were ranged from 0.095 ± 0.041 µSv.h-1 to 0.185 ± 0.042 µSv.h-1 with an average of 0.147 ± 0.047 µSv.h-1. The annual effective dose to public from outdoor environmental radiation at Motijheel Thana were found to be 0.166 ± 0.066 mSv to 0.324 ± 0.061 mSv with an average of 0.257 ± 0.039 mSv. Excess Life-time Cancer Risk (ELCR) on public are also estimated based on annual effective dose that is ranged from 0.662 ×10-3 to 1.289 ×10-3 with an average value of 1.025 ×10-3, which is higher than world average value of 0.29×10-3. Conclusion: This type of study is required for detection of the radiation hazard arising from the natu-ral as well as man-made sources and also for generation of the baseline database. From this study, it is observed that there is no pose any radiation hazard in the study area due to man-made sources.


2017 ◽  
Vol 9 (12) ◽  
pp. 19
Author(s):  
Nursama Heru Apriantoro ◽  
Muzilman Muslim ◽  
Dadong Iskandar ◽  
. Purwantiningsih ◽  
Witri Mulyani ◽  
...  

Terrestrial gamma radiation dose (TGRD) rate measurement has been conducted around downtown region of Central Jakarta Indonesia. The real time count data was taken 1 m above the ground in eight sub district locations by using a portable gamma Surveymeter of Exploranium GR-135 Plus Model. The reading position was detemined using  Garmin GPSMAP 62s. The average value of TGRD rate of  (47.76 ± 18.24) nSv h-1 ranged from 6.40 nSv h-1 to 120.90 nSv-1, it is higher than Indonesia. The annual effective dose rate of 0.058 mSv. Its  contributes to fatal cancer risk of about  3.22 x 10-5 per year for each individual in Central Jakarta. For the subdistrict TGRD rate value was variated, however all the result is not high enough to cause for alarm.


Author(s):  
Shamsad Tazmin ◽  
Dr. Mohammad Sohelur Rahman ◽  
Selina Yeasmin ◽  
Dr. M. Habibul Ahsan ◽  
Md. Mahfuzzaman

Background: In this study, environmental gamma radiation dose rates were measured in the area of Shahbag Thana under Dhaka city, Bangladesh. Aim of the study: This kind of study is required to detect the presence of natural and artificial radionuclides (if any) releasing from nuclear facilities in the country or from neighbouring countries. Materials and Method: The measurement was performed using a digital portable Gamma-Scout detector. The digital portable Gamma-Scout detector was placed at 1 meter above the ground on tripod and data acquisition time for each monitoring point (MP) was 1 hour. Total 27 MPs were selected for collection of gamma-ray dose rate in the outdoor environment of Shahbag Thana. The measurements were performed during light day from January to September 2017. The MPs were marked-out using Global Positioning System (GPS) navigation. The GP Sreading of the sampling locations were varied from E: 90˚23'32.94" to E: 90˚24'31.32" and from N:23˚44'19.38" to N: 23˚43'24.3". Results: The measured dose rates due to natural radionuclides were ranged from 0.085 ± 0.0245µSv.h-1 to 0.190526 ± 0.081886 µSv.h-1 with an average of 0.145265 ± 0.025192 µSv.h-1.The annual effective dose to the population from outdoor environmental gamma radiation was varied from0.104244 ± 0.030041 mSv  to 0.233661085 ± 0.100425 mSv. The range of dose rate and annual effective dosedue to outdoor environmental gamma radiation is lower than some countries like India, Sweden, China, CzechRepublic, Italy and higher than Canada, Turkey, Indonesia, Belgium, Albania, New Zealand and some other counties. Conclusion: From this study, it was observed that there is no burden of population exposure due to man-made sources. Therefore, it can be concluded that adequate safety and radiation protection of radiological facilities had been ensured which is required for minimizing of unnecessary exposure to populations from man-made sources. The estimated mean annual effective dose found in this study is not expected to contribute significant additional hazard from the radiological health point of view.


Sign in / Sign up

Export Citation Format

Share Document