scholarly journals Real-Time Environmental Gamma Dose Rates Measurement and Evaluation of Annual Effective Dose to population of Shahbag Thana, Dhaka, Bangladesh

Author(s):  
Shamsad Tazmin ◽  
Dr. Mohammad Sohelur Rahman ◽  
Selina Yeasmin ◽  
Dr. M. Habibul Ahsan ◽  
Md. Mahfuzzaman

Background: In this study, environmental gamma radiation dose rates were measured in the area of Shahbag Thana under Dhaka city, Bangladesh. Aim of the study: This kind of study is required to detect the presence of natural and artificial radionuclides (if any) releasing from nuclear facilities in the country or from neighbouring countries. Materials and Method: The measurement was performed using a digital portable Gamma-Scout detector. The digital portable Gamma-Scout detector was placed at 1 meter above the ground on tripod and data acquisition time for each monitoring point (MP) was 1 hour. Total 27 MPs were selected for collection of gamma-ray dose rate in the outdoor environment of Shahbag Thana. The measurements were performed during light day from January to September 2017. The MPs were marked-out using Global Positioning System (GPS) navigation. The GP Sreading of the sampling locations were varied from E: 90˚23'32.94" to E: 90˚24'31.32" and from N:23˚44'19.38" to N: 23˚43'24.3". Results: The measured dose rates due to natural radionuclides were ranged from 0.085 ± 0.0245µSv.h-1 to 0.190526 ± 0.081886 µSv.h-1 with an average of 0.145265 ± 0.025192 µSv.h-1.The annual effective dose to the population from outdoor environmental gamma radiation was varied from0.104244 ± 0.030041 mSv  to 0.233661085 ± 0.100425 mSv. The range of dose rate and annual effective dosedue to outdoor environmental gamma radiation is lower than some countries like India, Sweden, China, CzechRepublic, Italy and higher than Canada, Turkey, Indonesia, Belgium, Albania, New Zealand and some other counties. Conclusion: From this study, it was observed that there is no burden of population exposure due to man-made sources. Therefore, it can be concluded that adequate safety and radiation protection of radiological facilities had been ensured which is required for minimizing of unnecessary exposure to populations from man-made sources. The estimated mean annual effective dose found in this study is not expected to contribute significant additional hazard from the radiological health point of view.

Author(s):  
Sidratul Moontaha ◽  
Dr. Mohammad Sohelur Rahman ◽  
Dr. Md. Shafiqul Islam ◽  
Selina Yeasmin

Background: In this study, outdoor environmental gamma radiation dose rates were measured at area of Shahbag Thana under Dhaka city and Atomic Energy Research Establishment (AERE) Campus at Savar. Aim of the study: This kind of study is required to detect the presence of natural and artificial radionuclides (if any) releasing from nuclear and radiological facilities in the country or from neighbouring countries. Materials and Methods: The measurement was performed using a real-time portable radiation monitoring device from August-November 2017. The real-time portable radiation monitoring device was placed on tripod at 1 meter above the ground and data acquisition time for each monitoring point (MP) was 1 hour. Total 34 MP were selected around major nuclear and radiological facilities in Bangladesh for collection of dose rate due to gamma-ray. The MPs were marked-out using Global Positioning System (GPS) navigation. The GPS reading of the sampling locations were varied from E90º23'40.08" to E90º24'32.82" and from N23º44'58.62" to N23º43'26.58" for Shahbag Thana and from E90º16'26.58" to E90º16'50.52" and from N23º57'12.96" to N23º57'6.12" for AERE Campus, Savar. Results: The measured dose rates due to natural radionuclides were ranged from 0.105 ± 0.036056 μSv.h-1 to 0.208065 ± 0.106377μSv.h-1 with an average of 0.141568 ± 0.046995 μSv.h-1. The annual effective dose to the population from outdoor environmental gamma radiation was varied from 0.128772 ± 0.044218 mSv to 0.25517 ± 0.130461 mSv and the mean was found to be 0.17362± 0.057635 mSv. This value is lower than some countries like India, China, Sweden, Italy and Czech Republic; and higher than Canada, Mexico, Indonesia, Korea, Turkey, Finland, Spain and some other countries. Conclusion: From this study, it was observed that there is no burden of population exposure due to man-made sources. Therefore, it can be concluded that adequate safety and radiation protection of nuclear & radiological facilities had been ensured which is required for minimizing of unnecessary exposure to populations from man-made sources. The estimated mean annual effective dose found in this study is not expected to contribute significant additional hazard from the radiological health point of view.


2019 ◽  
Vol 11 (3) ◽  
pp. 263-272
Author(s):  
M. S. Mian ◽  
M. S. Rahman ◽  
J. Islam ◽  
K. N. Sakib ◽  
M. M. Tasnim ◽  
...  

Environmental gamma radiation dose rates were measured using a digital portable Gamma-Scout detector from April-May 2018. For this, total 22 monitoring points (MP) were selected in the outdoor environment in the area of Ramna Thana under Dhaka city. The MPs were marked-out using Global Positioning System (GPS) navigation. The GPS reading of the sampling locations were varied from E: 90o23.568' to E: 90o24.895' and from N: 23o44.031' to N: 23o45.018'. The measured dose rates due to natural radionuclides were ranged from 0.115 ± 0.042 µSv.hr-1 to 0.186 ± 0.051 µSv.h-1 with an average of 0.145 ± 0.044 µSv.h-1. The annual effective dose to the population from outdoor environmental gamma radiation was varied from 0.201 ± 0.073 mSv to 0.326 ± 0.090 mSv with an average of 0.255 ± 0.073 mSv. This kind of study is required to detect the presence of natural radionuclides and artificial radionuclides (if any) releasing from nuclear and radiological facilities in the country or from neighboring countries for normal operations or in case of accident/incident. From this study, it can be concluded that there is no radiation burden to the environment due to man-made sources.


2020 ◽  
Vol 108 (7) ◽  
pp. 573-579 ◽  
Author(s):  
Aslı Kurnaz ◽  
Şeref Turhan ◽  
Aybaba Hançerlioğulları ◽  
Elif Gören ◽  
Muhammet Karataşlı ◽  
...  

AbstractIn this study, content of natural radionuclides (226Ra, 232Th and 40K) and radon emanating power and radon mass exhalation rate of surface soil samples collected around industrial province Karabük in which the first iron steel plant was built in 1937 were determined by high-resolution γ-ray spectrometry with a high purity germanium detector. The average activity concentration of 226Ra, 232Th and 40K in soil samples were measured as 30 ± 2, 28 ± 2 and 251 ± 20 Bq kg−1, respectively. The average value of radon emanating power and mass exhalation rate of soil samples were found as 31 % and 19 μBq kg−l s−l, respectively. Assessment of possible radiation hazards to the people due to external exposure was done by estimating the outdoor absorbed gamma dose rate in the air at 1 m above the soil, the corresponding annual effective dose, and the excess lifetime cancer risk. The average outdoor gamma dose rate, annual effective dose, and lifetime cancer risk were estimated as 41 nGy h−1, 51 μSv y−1 and 2.0 × 10−4, respectively. A comparison of the activity and radiological results obtained for the studied samples with the corresponding worldwide average values indicates that the results are below the world average values.


2021 ◽  
Vol 9 (2) ◽  
pp. 32-40
Author(s):  
Abdullah Tareque ◽  
Suranjan Kumar Das ◽  
Mohammad Sohelur Rahman ◽  
Selina Yeasmin

Objective: Ionizing radiation is extensively used in the hospital for diagnosis and treatment procedures to patients and its usage increasing day by day with the socio-economic development of the country. The aim of the study is to monitor the real-time radiation around the Bangabandhu Sheikh Mujib Medical University (BSMMU) hospital campus and estimation of the radiation risk on public. Method: The real-time radiation monitoring around the BSMMU hospital campus was performed using digital portable radiation monitoring device (DPRMD). The DPRMD meets all European CE standards and the American “FCC 15 standard”. The DPRMD was placed at 1 meter above the ground on tripod and data taking time for each monitoring point (MP) was 1 hour. Each MP was identified using Garmin eTrex GPS device. 32 MPs were selected for taking the real-time radiation dose rates around the BSMMU hospital campus from August-September 2019. Results: The real-time radiation dose rates around the BSMMU hospital campus were ranged from 0.020-2.45 µSv/hr with an average of 0.211 ± 0.094 µSv/hr. The annual effective dose on public were ranged from 0.222 ± 0.052 mSv to 1.247 ± 0.071 mSv with an average of 0.368 ± 0.097 mSv. The excess life-time cancer risk (ELCR) on public was estimated based on the annual effective dose that ranged from 0.881×10-3 to 5.12×10-3 with an average value of 1.488×10-3 around the BSMMU hospital campus, which means that in every thousand people, one person is at the risk of developing cancer caused by the scattered radiation exposure from the hospital. Conclusion: Real-time radiation monitoring makes possible to ensure the protection the radiation worker and the public from unnecessary radiation hazard. The study also provides the instantaneous information of inappropriate operation of radiation generating equipments and improper handling of radioactive substances in the hospital.


Author(s):  
C. P. Ononugbo ◽  
O. Azikiwe ◽  
G. O. Avwiri

Radioactivity distribution and transfer factor (TF) in plants are crucial parameters used to assess radioactive contamination in the environment, impact of soil radioactivity on agricultural crops and its risks to humans.  The root crop cassava (Manihot esculenta) provides about 50 percent of the calories consumed in Nigeria. Gamma - ray spectroscopy was used to measure activity concentrations of 226Ra, 232Th and 40K in cassava root and soil. The average activity concentration of 40K, 226Ra and 232Th in cassava was 565.31± 13.17, 21.89±5.94 and 817.28±2.52 Bqkg-1 respectively. The mean activity concentration   40K, 226Ra and 232Th in soil range from 92.07±35.08 to 689.28±14.35 Bqkg-1with a mean value of 413.64±21.22 Bqkg-1, 5.37 ± 8.90 to 64.93 ± 7.23 Bqkg-1 with a mean value of 54.43 ± 3.22 and BDL to 928.15 ± 2.36 Bqkg-1 with a mean value of 561.67 ± 2.21 Bqkg-1. The transfer values for 226Ra, 232Th and 40K were in the range of 0 to 1.81, 0 to 3.41 and 0.68 to 4.5 respectively. The high value of transfer factor for 40k may be due to its importance in plant growth, fertilization and adaptability of plant to environmental pressures. It may have also been enhanced by the application of NPK fertilizers in those farms. Thorium showed the highest mean transfer factor which may be due to its higher accumulation in soil and higher uptake by plants (Figure 3). The average transfer factors of 226Ra (0.99) < 40K (1.55) < 232Th (1.66) show that although activity concentration of the natural radioisotopes in the area under study are high, the rate at which they are transferred to cassava are still moderate.  The average values of radium equivalent activity (Raeq), absorbed dose rate (D), annual effective dose rate (AEDE), internal hazard index and excess life cancer risk (ELCR) are 1009.27 Bqk-1, 346.50 nGyh-1, 1.51 mSvy-1, 2.78 and 3.92 x 10-3 for respectively. These values were higher than their corresponding permissible values of 370Bqk-1, 55nGyh-1, 1.0 mSvy-1, 1.0 and 0.29 x 10-3 respectively. The mean values of Hex and Hin are greater than unity and may, therefore, constitute a significant radiological health risk. The mean annual gonad dose estimated value of 2943.90 mSvy-1  was above the world acceptable value of 300 mSvy-1 and the annual effective dose in all the samples except in few locations as shown in Figure 2, exceeded the safe value of 1.0 mSvy-1. The use of soil from these farms and the crops may constitute a threat to the bone marrow and general health conditions of the inhabitants.


BIBECHANA ◽  
2018 ◽  
Vol 16 ◽  
pp. 187-195
Author(s):  
Parkash Pantha ◽  
Tanka Prasad Bhusal ◽  
Budha Ram Shah ◽  
Rajendra Prasad Koirala

The study of natural background radiation dose at thirty two locations of Kathmandu valley has been done successfully using the instrument Radalert 100. The average dose rates and annual effective dose were measured. From the measurements, the least value of average dose rate was found to be (22.3±3.9)×10-3 mR/hr for Sundhara and the greatest value of average dose rate was  found to be (37.7±7)×10-3 mR/hr for Budhanilkantha 3.  As per the annual effective dose, the least value was 0.391 mSv/yr for Sundhara and the greatest value was 0.661 mSv/yr for Budhanilkantha 3. The average annual effective dose of Kathmandu valley was 0.475 mSv/yr ranging from 0.391 mSv/yr to 0.661 mSv/yr. The values thus obtained were compared to the worldwide average value of annual effective dose, 0.48 mSv/yr. Also, the obtained values were compared to the legal dose limit (annual effective dose), 1 mSv/yr set by International Commission on Radiological Protection (ICRP) for non-radiation workers and members of public. Among these thirty two locations, eight locations were chosen such that they had larger range of the observed dose rates. Those eight locations were re-observed. Further, Chi-square test was carried out to test whether the observed dose rates were following normal distribution or not. From the calculation, it was observed that the observed dose rates were following the normal distribution.BIBECHANA 16 (2019) 187-195


Author(s):  
Hamed Masoumi ◽  
Mohammad Keshtkar

Purpose: Humans are always exposed to ionizing radiation from their environment, which can have destructive effects. This study aimed to measure background gamma radiation and estimate annual effective dose and excess cancer risk in Gonabad city. Materials and Methods: The dose rate due to indoor and outdoor background radiation was measured by RDS-30 radiation survey meter at five zones on the map, including North, South, East, West, and center. Then, the annual effective dose and excess lifetime cancer risk were calculated by associated equations. Results: Mean dose rates for outdoor and indoor spaces were 0.111 µSv/h and 0.139 µSv/h, respectively. The mean background dose rate of indoor space was significantly higher than that of outdoor space. Annual effective dose and excess lifetime cancer risk were obtained as 0.817 and 2.85×10-3, respectively. Conclusion: Background radiation dose, annual effective dose, and cancer risk for Gonabad city were higher than global ones. Further investigations are needed to encompass internal background radiation doses in annual effective dose.


2017 ◽  
Vol 13 (4) ◽  
pp. 593-597
Author(s):  
Habu Tela Abba ◽  
Wan Muhammad Saridan Wan Hassan ◽  
Muneer Aziz Saleh ◽  
Abubakar Sadiq Aliyu ◽  
Ahmad Termizi Ramli

A study was conducted to estimate the terrestrial gamma radiation (TGR) dose rates associated with the natural radionuclides 238U, 232Th and 40K in the characteristic geological formations of Jos Plateau. A total of 51 surface soils from all the geological units were collected and measured using high-resolution gamma ray spectrometry system. From the measured activity concentrations of 238U, 232Th and 40K, TGR dose rates in air outdoors 1 m above ground surface, were estimated to be in the range of 36 nGy h-1 to 456 nGy h-1, depending on the geological formation, with an overall mean value of 143 nGy h-1. The estimated mean value is by a factor of two higher than the world average value of 59 nGy h-1. Geological formation G8 (Younger granites) appear to have the highest mean TGR dose rate while G7 (sandstone, clay and shale) show the lowest mean TGR dose rate. The results of this study inferred that, TGR dose rates outdoors for Jos Plateau differs with the different geological formations and significantly contributed by 232Th. An isodose map for the distribution of TGR and exposure rate to the public due to natural sources was also plotted using ArcGIS software. The data here presented can be used to evaluate public radiation dose and to produce radiological map for the country.


Author(s):  
A. Ibitola, Gilbert ◽  
Ajanaku Olanrewaju ◽  
Ilori, Abiola Olawale ◽  
R. O. Aremu ◽  
I. A. A. Omosebi

The aim of this present study is to collect soil samples and some commonly consumed food materials in Ondo State, Nigeria such as tubers (cassava, Manihot esculent and yam, Dioscorea alata) samples and vegetables (waterleaf, Talinium triangulare and bitter leaf, Vernonia amygdalina) samples at some selected locations in Okitipupa, Ondo state, Southwestern, Nigeria in order to determine the following natural radionuclides (40K, 238U and 232Th) levels using a well calibrated NaI(TI) which is well shielded with a detector coupled to a computer resident quantum MCA2100R Multichannel. The transfer factors, annual absorbed dose rate and the annual effective dose in the samples collected were estimated. The results showed that the measured natural radionuclides were present in the mean concentrations of 323.79 ± 12.45 Bqkg-1, 81.87 ± 45.30 Bqkg-1 and 57.62 ± 18.04 Bqkg-1 for 40K; 11.76 ± 36.03 Bqkg-1, 4.67 ± 10.12 Bqkg-1 and 3.45 ± 2.10 Bqkg-1 for 238U and 9.66 ± 0.89 Bqkg-1, 3.07 ± 2.45 Bqkg-1  and 2.45 ± 0.92 Bqkg-1  for 232Th for soil, yam and cassava samples respectively. The results also showed that the radionuclides were present in the concentrations of 11.76 ± 36.03 Bqkg-1 and 9.66 ± 0.89 Bqkg-1 for 40K; 9.67 ± 8.53 Bqkg-1 and 7.87 ± 1.89 Bqkg-1 for 238U and 8.63 ± 6.08 Bqkg-1 and 6.58 ± 0.76 Bqkg-1 for 232Th for waterleaf and bitter leaf samples respectively. The soil-to-yam transfer factors were found to be 0.26, 0.40 and 0.32 for 40K, 238U and 232Th and soil-to-cassava yam transfer factors were found to be 0.18, 0.29 and 0.25 for 40K, 238U and 232Th respectively. The soil-to-waterleaf transfer factors were found to be 0.37, 0.82 and 0.82 for 40K, 238U and 232Th while the soil-to-bitter leaf transfer factors were found to be 0.32, 0.74 and 0.68 for 40K, 238U and 232Th respectively. The mean absorbed dose rate was 25.08 ± 0.57  and the mean annual outdoor effective dose was 46.17 . The annual effective dose reported for this present study area represents 65.95% of the world average value of 70.00 and 47.11% of Nigeria value of 98.00 mSvy-1  


Sign in / Sign up

Export Citation Format

Share Document