scholarly journals Determination of thermophysical properties of cupuassu (Theobroma grandiflorum) dry almonds

Author(s):  
Elisa Santana Cunha ◽  
Geovana Pires Araújo Lima ◽  
Jorge Henrique Oliveira Sales ◽  
Elizama Aguiar de Oliveira

In comparison to cocoa, little has been reported on the drying of cupuassu almonds that can be used to produce cupulate, a chocolate type product. Thus, in this study thermophysical properties of cupuassu dry almonds (moisture = 9.68 % d.b.) were determined as: thermal conductivity (k) of 0.14 kW/(m.K), specific heat (cp) of 2.86 kJ/(kg.K), thermal diffusivity (?) of 4.8·10-5 m²/s, effective diffusivity (Deff) of 9.94·10-10 - 6.29·10-10 m²/s and activation energy (Ea) of 14.90 kJ/mol. These results showed a similarity of values between cupuassu and cocoa and allows to perform more specific studies for the development of dryers for the cupuassu almonds.

1981 ◽  
Vol 9 ◽  
Author(s):  
Roger K. Crouch ◽  
A. L. Fripp ◽  
W. J. Debnam ◽  
R. E. Taylor ◽  
H. Groot

ABSTRACTThe thermal diffusivity of Ge has been measured over a temperature range from 300° C to 1010° C which includes values for the melt. Specific heat has been measured from room temperature to 727° C. Thermal conductivity has been calculated over the same temperature range as the diffusivity measurements. These data are reported along with the best values from the literature for the other parameters which are required to calculate the temperature and convective fields for the growth of germanium by the Bridgman method. These parameters include the specific heat, the viscosity, the emissivity, and the density as a function of temperature.


1989 ◽  
Vol 189 (6) ◽  
pp. 525-529 ◽  
Author(s):  
Ricardo I. Perez-Mart�n ◽  
Jose M. Gallardo ◽  
Julio R. Banga ◽  
J. Casares

Author(s):  
Arjun Sharma ◽  
M. D. Islam ◽  
Ebrahim Al Hajri

Abstract Fouling is one of the major factors that drastically affects heat exchanger performance. Especially in Middle East where most of the heat exchangers are air cooled due to scarcity of water. As these heat exchangers are placed in a harsh climate, they are at high risk of low performance due to dusty/sticky particulate fouling. In order to identify possible active/passive methods to control or ideally eliminate particulate fouling, it is desirable to know exact thermophysical properties of such particulate fouling. This study presents thermophysical property characterization of selected fouling samples from eight different fin fan heat exchangers installed in an oil & gas facility in the Middle East. Laser flash Analysis (LFA) method is a well-known technique for measurement of the thermophysical properties: thermal diffusivity, specific heat and thermal conductivity of materials. A new technique was developed to prepare powder particulate fouling samples to make them as disc shaped samples while maintaining the range of ± 12 mm diameter and ± 2 mm thickness. The LFA measurements was conducted using LFA 447 Nano Flash Netzsch over the temperature range from 25 °C to 125°C. The thermal diffusivity was measured with an accuracy of ± 3% and the specific heat capacity with an accuracy of ± 5%. As the thermal conductivity is a product of these two measured values, is calculated with an accuracy of ± 5.8% and the measurement repeatability was within 2%.


Author(s):  
Normane Mirele Chaves da Silva ◽  
Renata Cristina Ferreira Bonomo ◽  
Luciano Brito Rodrigues ◽  
Modesto Antonio Chaves ◽  
Rafael da Costa Ihéu Fontan ◽  
...  

The influence of temperature and water content on thermophysical properties (density, thermal diffusivity, thermal conductivity and specific heat) of genipap (Genipa americana, L) pulp at medium maturity were studied. The thermophysical properties were determined at concentrations between 6.0% m/m and 24.0% m/m of water content and temperatures range of 5 to 80°C. The density decreased with increase in temperature and water content, while the thermal diffusivity and conductivity increased as temperature and water content increased. The specific heat decreased with the moisture content. Empirical models were fitted to the experimental data for each property and the accuracy of those models was checked.


Author(s):  
Amber Vital ◽  
Bradley Doleman ◽  
Messiha Saad

As today’s technology continues to develop at a rate that was once unimaginable, the demand for new materials that will outperform traditional materials also increases dramatically. To meet these challenges, monolithic materials are being combined to develop new unique materials called composites. Thermophysical properties of composite materials such as thermal conductivity, diffusivity, specific heat, and thermal expansion are very important in engineering design process and analysis of aerospace vehicles as well as space systems. These properties are also important in power generation, transportation, and energy storage devices including fuel cells. Thermal conductivity is the property that determines the working temperature levels of a material and plays a critical role in the performance of materials in high temperature applications. This parameter is important in problems involving heat transfer and thermal structures. The objective of this paper is to develop a thermal properties database for the carbon-epoxy AS4/3501-6 composite. The AS4 carbon fiber used is a unidirectional continuous PAN based fiber, and the 3501-6 epoxy resin is amine cured and provides low shrinkage during the curing process while maintain resistance to chemicals and solvents. The thermophysical properties of the AS4 composite have been investigated using experimental methods. The flash method was used to measure the thermal diffusivity of the composite based on the American Society for Testing and Materials standard, ASTM E1461. In addition, the Differential Scanning Calorimeter was used in accordance with the ASTM E1269 standard to measure the specific heat. The measured thermal diffusivity, specific heat, and density were used to compute the thermal conductivity, thus adding to the currently insufficient database for composite materials and foams.


Sign in / Sign up

Export Citation Format

Share Document