scholarly journals Using Qualitative Evidence to Enhance an Agent-Based Modelling System for Studying Land Use Change

Author(s):  
Gary Polhill ◽  
Lee-Ann Sutherland ◽  
Nicholas M. Gotts
2014 ◽  
Vol 61 ◽  
pp. 19-38 ◽  
Author(s):  
Dave Murray-Rust ◽  
Derek T. Robinson ◽  
Eleonore Guillem ◽  
Eleni Karali ◽  
Mark Rounsevell

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2814 ◽  
Author(s):  
Thomas J. Habib ◽  
Scott Heckbert ◽  
Jeffrey J. Wilson ◽  
Andrew J. K. Vandenbroeck ◽  
Jerome Cranston ◽  
...  

The science of ecosystem service (ES) mapping has become increasingly sophisticated over the past 20 years, and examples of successfully integrating ES into management decisions at national and sub-national scales have begun to emerge. However, increasing model sophistication and accuracy—and therefore complexity—may trade-off with ease of use and applicability to real-world decision-making contexts, so it is vital to incorporate the lessons learned from implementation efforts into new model development. Using successful implementation efforts for guidance, we developed an integrated ES modelling system to quantify several ecosystem services: forest timber production and carbon storage, water purification, pollination, and biodiversity. The system is designed to facilitate uptake of ES information into land-use decisions through three principal considerations: (1) using relatively straightforward models that can be readily deployed and interpreted without specialized expertise; (2) using an agent-based modelling framework to enable the incorporation of human decision-making directly within the model; and (3) integration among all ES models to simultaneously demonstrate the effects of a single land-use decision on multiple ES. We present an implementation of the model for a major watershed in Alberta, Canada, and highlight the system’s capabilities to assess a suite of ES under future management decisions, including forestry activities under two alternative timber harvest strategies, and through a scenario modelling analysis exploring different intensities of hypothetical agricultural expansion. By using a modular approach, the modelling system can be readily expanded to evaluate additional ecosystem services or management questions of interest in order to guide land-use decisions to achieve socioeconomic and environmental objectives.


2020 ◽  
Author(s):  
Calum Brown ◽  
Ian Holman ◽  
Mark Rounsevell

Abstract. Land use models operating at regional to global scales are almost exclusively based on the single paradigm of economic optimisation. Models based on different paradigms are known to produce very different results, but these are not always equivalent or attributable to particular assumptions. In this study, we compare two pan-European land use models that are based on the same integrated modelling framework and utilise the same climatic and socio-economic scenarios, but which adopt fundamentally different model paradigms. One of these is a constrained optimising economic-equilibrium model and the other is a stochastic agent-based model. We run both models for a range of scenario combinations and compare their projections of spatial and aggregate land use change and ecosystem service supply. We find that the agent-based model projects more multifunctional and heterogeneous landscapes in most scenarios, providing a wider range of ecosystem services at landscape scales, as agents make individual, time-dependent decisions that reflect economic and non-economic motivations. This tendency also results in food shortages under certain scenario conditions. The optimisation model, in contrast, maintains food supply through intensification of agricultural production in the most profitable areas, sometimes at the expense of active management in large, contiguous parts of Europe. We relate the principal differences observed to underlying model assumptions, and hypothesise that optimisation may be appropriate in scenarios that allow for coherent political and economic control of land systems, but not in scenarios where economic and other scenario conditions prevent the normal functioning of price signals and responses. In these circumstances, agent-based modelling allows explicit consideration of behavioural processes, but in doing so provides a highly flexible account of land system development that is harder to link to underlying assumptions. We suggest that structured comparisons of parallel, transparent but paradigmatically distinct models are an important method for better understanding the potential scope and uncertainties of future land use change.


Author(s):  
Eda Ustaoglu ◽  
Arif Çagdaş Aydinoglu

Land-use change models are tools to support analyses, assessments, and policy decisions concerning the causes and consequences of land-use dynamics, by providing a framework for the analysis of land-use change processes and making projections for the future land-use/cover patterns. There is a variety of modelling approaches that were developed from different disciplinary backgrounds. Following the reviews in the literature, this chapter focuses on various modelling tools and practices that range from pattern-based methods such as machine learning and GIS (Geographic Information System)-based approaches, to process-based methods such as structural economic or agent-based models. For each of these methods, an overview is given for the advances that have been progressed by geographers, natural and economy scientists in developing these models of spatial land-use change. It is noted that further progress is needed in terms of model development, and integration of models operating at various scales that better address the multi-scale characteristics of the land-use system.


Author(s):  
Mitchell Welch ◽  
Paul Kwan ◽  
A.S.M. Sajeev ◽  
Graeme Garner

Agent-based modelling is becoming a widely used approach for simulating complex phenomena. By making use of emergent behaviour, agent based models can simulate systems right down to the most minute interactions that affect a system’s behaviour. In order to capture the level of detail desired by users, many agent based models now contain hundreds of thousands and even millions of interacting agents. The scale of these models makes them computationally expensive to operate in terms of memory and CPU time, limiting their practicality and use. This chapter details the techniques for applying Dynamic Hierarchical Agent Compression to agent based modelling systems, with the aim of reducing the amount of memory and number of CPU cycles required to manage a set of agents within a model. The scheme outlined extracts the state data stored within a model’s agents and takes advantage of redundancy in this data to reduce the memory required to represent this information. The techniques show how a hierarchical data structure can be used to achieve compression of this data and the techniques for implementing this type of structure within an existing modelling system. The chapter includes a case study that outlines the practical considerations related to the application of this scheme to Australia’s National Model for Emerging Livestock Disease Threats that is currently being developed.


2010 ◽  
Vol 91 (12) ◽  
pp. 2615-2625 ◽  
Author(s):  
Diego Valbuena ◽  
Arnold K. Bregt ◽  
Clive McAlpine ◽  
Peter H. Verburg ◽  
Leonie Seabrook
Keyword(s):  
Land Use ◽  

Sign in / Sign up

Export Citation Format

Share Document