scholarly journals Circular RNA ITCH promotes extracellular matrix degradation via activating Wnt/β-catenin signaling in intervertebral disc degeneration

Aging ◽  
2021 ◽  
Author(s):  
Feng Zhang ◽  
Feili Lin ◽  
Zhiwen Xu ◽  
Zheng Huang
2020 ◽  
Vol 245 (6) ◽  
pp. 532-541
Author(s):  
Kang Wei ◽  
Jun Dai ◽  
Zhenggang Wang ◽  
Yaping Pei ◽  
Yan Chen ◽  
...  

Intervertebral disc degeneration is the main cause of low back pain. However, its pathomechanism has not been fully clarified yet. Previous studies have indicated that inflammation may lead to apoptosis of nucleus pulposus cells and break the balance between anabolism and catabolism of the nucleus pulposus extracellular matrix. The purpose of this study is to explore the mitigative effect of oxymatrine on extracellular matrix degradation and apoptosis of nucleus pulposus cells after interleukin-1 beta-induced inflammation, and its possible signaling pathway. We examined the gene and protein levels of collagen II, aggrecan, and MMPs (MMP2/3/9/13) and interleukin 6 in nucleus pulposus cells. The results demonstrated that oxymatrine could reduce extracellular matrix degradation and apoptosis of nucleus pulposus cells; interleukin-1 beta prompted the expression of MMPs and interleukin 6 through TLR4/NF-κB axis, while oxymatrine reduced the expression of MMPs and TNF-α induced by interleukin-1 beta. Moreover, TAK 242, as a small molecule inhibitor of TLR4 signaling, was used to detect the effect of oxymatrine on the TLR4/NF-κB signaling. The final experimental results show that oxymatrine could reduce the inflammatory response of nucleus pulposus cells and degradation of nucleus pulposus tissue. Oxymatrine may be a potential medicine to reduce disc inflammation and relieve intervertebral disc degeneration by inhibiting the TLR4/NF-κB signal pathway. Impact statement Currently, drug therapy is a potential treatment for patients with intervertebral disc degeneration. In the present research, oxymatrine intervenes in intervertebral disc degeneration effectively via regulating inflammation in intervertebral disc degeneration rats. Our research highlights the therapeutic potential of oxymatrine in the treatment of intervertebral disc degeneration.


2020 ◽  
Vol 11 (12) ◽  
pp. 10864-10875
Author(s):  
Zhenxuan Shao ◽  
Jiajie Lu ◽  
Chenxi Zhang ◽  
Guoling Zeng ◽  
Boda Chen ◽  
...  

Stachydrine ameliorates inflammatory responses and extracellular matrix degradation, via the PI3K/Akt/NF-κB signalling pathway in the progression of intervertebral disc degeneration.


2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Jun Long ◽  
Xiaobo Wang ◽  
Xianfa Du ◽  
Hehai Pan ◽  
Jianru Wang ◽  
...  

Abstract Background Intervertebral disc degeneration (IVDD)-related disorders are the major causes of low back pain. A previous study suggested that Notch activation serves as a protective mechanism and is a part of the compensatory response that maintains the necessary resident nucleus pulposus (NP) cell proliferation to replace lost or non-functional cells. However, the exact mechanism remains to be determined. In this study, we aimed to investigate the role of JAG2/Notch2 in NP cell proliferation and apoptosis. Methods Recombinant JAG2 or Notch2, Hes1, and Hey2 siRNAs were used to activate or inhibit Notch signaling. Cell proliferation, apoptosis, cell cycle regulatory factors, and pathways associated with Notch-mediated proliferation were examined. In vivo experiments involving an intradiscal injection of Sprague-Dawley rats were performed. Results Recombinant JAG2 induced Notch2 and Hes1/Hey2 expression together with NP cell proliferation. Downregulation of Notch2/Hes1/Hey2 induced G0/G1 phase cell cycle arrest in NP cells. Moreover, Notch2 mediated NP cell proliferation by regulating cyclin D1 and by activating PI3K/Akt and Wnt/β-catenin signaling. Furthermore, Notch signaling inhibited TNF-α-promoted NP cell apoptosis by suppressing the formation of the RIP1-FADD-caspase-8 complex. Finally, we found that intradiscal injection of JAG2 alleviated IVDD and that sh-Notch2 aggravated IVDD in a rat model. These results indicated that JAG2/Notch2 inhibited IVDD by modulating cell proliferation, apoptosis, and extracellular matrix. The JAG2/Notch2 axis regulated NP cell proliferation via PI3K/Akt and Wnt/β-catenin signaling and inhibited TNF-α-induced apoptosis by suppressing the formation of the RIP1-FADD-caspase-8 complex. Conclusions The current and previous results shed light on the therapeutic implications of targeting the JAG2/Notch2 axis to inhibit or reverse IVDD.


Sign in / Sign up

Export Citation Format

Share Document