scholarly journals Effects of microRNA-19b on airway remodeling, airway inflammation and degree of oxidative stress by targeting TSLP through the Stat3 signaling pathway in a mouse model of asthma

Oncotarget ◽  
2017 ◽  
Vol 8 (29) ◽  
pp. 47533-47546 ◽  
Author(s):  
Ling Ye ◽  
Yan Mou ◽  
Jian Wang ◽  
Mei-Ling Jin
2021 ◽  
pp. jim-2020-001437
Author(s):  
Ming Chen ◽  
Minghui Li ◽  
Na Zhang ◽  
Wenwen Sun ◽  
Hui Wang ◽  
...  

This study was aimed to investigate the effects of miR-218-5p on the proliferation, apoptosis, autophagy, and oxidative stress of rheumatoid arthritis synovial fibroblasts (RASFs), and the related mechanisms. Quantitative reverse transcription–PCR showed that the expression of miR-218-5p in rheumatoid arthritis synovial tissue was significantly higher than that in healthy synovial tissue. Compared with healthy synovial fibroblasts, miR-218-5p expression was obviously upregulated in RASFs, while KLF9 protein expression was markedly downregulated. Mechanistically, miR-218-5p could directly bind to the 3′ untranslated region of KLF9 to inhibit the expression of KLF9. Additionally, transfection of miR-218-5p small interfering RNA (siRNA) inhibited the proliferation but promoted apoptosis and autophagy of RASFs. Simultaneously, miR-218-5p silencing reduced reactive oxygen species and malondialdehyde levels and increased superoxide dismutase and glutathione peroxidase activity to improve oxidative stress in RASFs. More importantly, the introduction of KLF9 siRNA reversed the effects of miR-218-5p siRNA transfection on RASF proliferation, apoptosis, autophagy, and oxidative stress. What is more, silencing miR-218-5p inhibited the activation of JAK2/STAT3 signaling pathway by targeting KLF9. Collectively, knockdown of miR-218-5p could regulate the proliferation, apoptosis, autophagy and oxidative stress of RASFs by increasing the expression of KLF9 and inhibiting the activation of the JAK2/STAT3 signaling pathway, which may provide a potential target for the mechanism research of RA.


Endocrinology ◽  
2013 ◽  
Vol 154 (8) ◽  
pp. 2936-2947 ◽  
Author(s):  
Won Gu Kim ◽  
Jeong Won Park ◽  
Mark C. Willingham ◽  
Sheue-yann Cheng

Abstract Recent epidemiological studies provide strong evidence suggesting obesity is a risk factor in several cancers, including thyroid cancer. However, the molecular mechanisms by which obesity increases the risk of thyroid cancer are poorly understood. In this study, we evaluated the effect of diet-induced obesity on thyroid carcinogenesis in a mouse model that spontaneously develops thyroid cancer (ThrbPV/PVPten+/− mice). These mice harbor a mutated thyroid hormone receptor-β (denoted as PV) and haplodeficiency of the Pten gene. A high-fat diet (HFD) efficiently induced the obese phenotype in ThrbPV/PVPten+/− mice after 15 weeks. Thyroid tumor growth was markedly greater and survival was significantly lower in ThrbPV/PVPten+/− mice fed an HFD than in controls fed a low-fat diet (LFD). The HFD increased thyroid tumor cell proliferation by increasing the protein levels of cyclin D1 and phosphorylated retinoblastoma protein to propel cell cycle progression. Histopathological analysis showed that the frequency of anaplasia of thyroid cancer was significantly greater (2.6-fold) in the HFD group than the LFD group. The HFD treatment led to an increase in parametrial/epididymal fat pad and elevated serum leptin levels in ThrbPV/PVPten+/− mice. Further molecular analyses indicated that the HFD induced more aggressive pathological changes that were mediated by increased activation of the Janus kinase 2-signaling transducer and activator of transcription 3 (STAT3) signaling pathway and induction of STAT3 target gene expression. Our findings demonstrate that diet-induced obesity exacerbates thyroid cancer progression in ThrbPV/PVPten+/− mice and suggest that the STAT3 signaling pathway could be tested as a potential target for the treatment of thyroid cancer.


Sign in / Sign up

Export Citation Format

Share Document