Calculation of the Cutting Forces and Torque when Milling with End Mills

Author(s):  
S.V. Grubyi

This paper presents a computational sequence for calculating the components of the cutting force and torque when milling with carbide end mills. The calculation algorithm includes the transition from the tangential and radial components of the force to the force components in the machine coordinate system. On the helical cutting edge, two parts are highlighted: one on the cylindrical (peripheral) surface and the other one on the arc of the rounded tip of the tooth. These parts of the cutting edge are divided into sections where the calculation is performed, followed by summation of the force components along the axes of the machine co-ordinate system and the moment relative to the axis of the cutter. An analysis of the components of the force and torque depending on the depth of cutting, feed, number of teeth of the cutter, blade wear and radius of the tip rounding is performed. The ratio of forces and moments for various milling conditions of structural carbon steel and aluminum alloys is shown. The developed algorithm is applied in a computational program that can be used to perform operational calculations of forces and torque for various milling conditions. The calculated parameters can be used as technological limiters in optimization problems, as well as for strength calculations of tools, milling equipment, and the selection of components of milling machine drives.

2013 ◽  
Vol 325-326 ◽  
pp. 1406-1411 ◽  
Author(s):  
Samy E. Oraby

The determination of actual stresses over the tool-workpiece interface has long been a matter of debate among researchers. Evaluation of the nature and the geometry of the wear contact area were always associated with many, sometime impractical, assumptions. The indeterministic fashion of edge wear and deformation requires a more realistic way to predict the actual wear contact area. In the current study, many wear area patterns are proposed considering the different wear modes of the cutting edge. The selection of the most correlated pattern to a specific edge deformation is justified using the relevant variations in the radial and the axial force components. For a regular wear over the entire cutting edge, a wear pattern that considers nose and/or flank is justified. When the cutting edge plastically fails, a pattern that considers only nose wear is preferred. As the cutting edge is subjected to many types of irregular disturbances of edge fracture and chipping, a wear pattern considering both flank and nose wear is selected.


2021 ◽  
Vol 5 (3) ◽  
pp. 77
Author(s):  
Berend Denkena ◽  
Alexander Krödel-Worbes ◽  
Sascha Beblein ◽  
Markus Hein

One of the decisive factors for the performance of milling tools is the quality of the cutting edge. The latter results from the process control of the individual steps along the tool manufacturing process chain, which generally includes the sintering or pressing of the blanks, grinding, cutting edge preparation, and coating of the tools. However, the targeted and application-specific design of the process steps in terms of high economic efficiency is currently limited by a lack of knowledge regarding the influence of the corresponding process parameters on the resulting cutting edge quality. In addition, there is a lack of suitable parameters that adequately represent the characteristics of the cutting edge microtopography. This publication therefore investigates the influence of manufacturing processes on cutting edge quality and wear behavior of end mills. On this basis, different characterization parameters for the cutting edge quality are derived and evaluated with regard to their ability to predict the wear behavior.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5014
Author(s):  
Giovanni Benelli

The Editorial outlines recent research advances in green insecticide research. Particular attention is devoted to studies shedding light on the modes of action and non-target toxicity of natural substances of plant origin. Research focusing on the development of new formulations (including those relating to nano-objects) to magnify the effectiveness and stability of green insecticides in the field represents key advances. Herein, a carefully reviewed selection of cutting edge articles about green pesticide development recently published in Molecules is presented. The impact of sub-lethal doses of green insecticides on insect behavioral traits is still overlooked, representing a timely challenge for further research.


2012 ◽  
Vol 186 ◽  
pp. 239-246
Author(s):  
Silviu Mihai Petrişor ◽  
Ghiţă Bârsan

The authors of this paper aim to highlight the basic design of a flexible manufacturing cell destined for the final processing of water radiators used for AAVs, cell serviced by a serial modular industrial robot possessing in its kinematic chain structure three degrees of freedom, RRT SIL type. The paper outlines the concept, calculation and design of the (MRB) rotation module at the studied industrial robot’s base and of the (MT) translation module of the prehension device attached to the robotic arm. Depending on the organological elements that are part of the MRB rotation module and based on a rigorous dynamic study performed on robotic modules, modeling conducted with the help of Lagrangian equations of the second kind, a dynamic-organological calculation algorithm was obtained for the selection of the appropriate driving servomotor necessary to putting the rotation movable system into service. The last part of the paper deals with the flexible manufacturing cell, together with the calculations related to profitability, economy and investment return duration, following the implementation of the RRT SIL-type industrial robot.


Author(s):  
Bong Seong Jung ◽  
Bryan W. Karney

Genetic algorithms have been used to solve many water distribution system optimization problems, but have generally been limited to steady state or quasi-steady state optimization. However, transient events within pipe system are inevitable and the effect of water hammer should not be overlooked. The purpose of this paper is to optimize the selection, sizing and placement of hydraulic devices in a pipeline system considering its transient response. A global optimal solution using genetic algorithm suggests optimal size, location and number of hydraulic devices to cope with water hammer. This study shows that the integration of a genetic algorithm code with a transient simulator can improve both the design and the response of a pipe network. This study also shows that the selection of optimum protection strategy is an integrated problem, involving consideration of loading condition, device and system characteristics, and protection strategy. Simpler transient control systems are often found to outperform more complex ones.


Author(s):  
I.P. POPOV

The starting mode for the train is the most difficult. An effective method of pulling is the selection of coupling clearances. In this case, the cars are set in motion sequentially and the inert mass, as well as the static friction force immediately at the moment of starting, are minimal. This method has two significant drawbacks - a small fixed value of the gaps in the couplings and the shock nature of the impulse transfer. These disadvantages can be avoided by using elastically deformable couplings. The aim of this work is to construct a mathematical model of "easy" starting of a train with elastic couplings. The softening of the train start-off mode is essentially due to the replacement of the simultaneous start-off of the sections with alternate ones. To exclude longitudinal vibrations of the composition, after reaching the maximum tension of the coupling, the possibility of its harmonic compression should be mechanically blocked.


Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 568 ◽  
Author(s):  
Zhiqiang Liang ◽  
Peng Gao ◽  
Xibin Wang ◽  
Shidi Li ◽  
Tianfeng Zhou ◽  
...  

Tool wear is a significant issue for the application of micro end mills. This can be significantly improved by coating materials on tool surfaces. This paper investigates the effects of different coating materials on tool wear in the micro milling of Ti-6Al-4V. A series of cutting experiments were conducted. The tool wear and workpiece surface morphology were investigated by analyzing the wear of the end flank surface and the total cutting edge. It was found that, without coating, serious tool wear and breakage occurred easily during milling. However, AlTiN-based and AlCrN-based coatings could highly reduce cutting edge chipping and flank wear. Specifically, The AlCrN-based coated mill presented less fracture resistance. For TiN coated micro end mill, only slight cutting edge chipping occurred. Compared with other types of tools, the AlTiN-based coated micro end mill could maximize tool life, bringing about an integrated cutting edges with the smallest surface roughness. In short, the AlTiN-based coating material is recommended for the micro end mill in the machining of Ti-6Al-4V.


2012 ◽  
Vol 557-559 ◽  
pp. 2303-2306
Author(s):  
Shu Bin Kan

The motion characteristic of key components is a decisional factor to the working reliability and stability of a package machine. In this paper, the motion simulation of a key component is carried out in the ADAMS software environment. By analysis of the force, variance of the center-of-mass and the moment of the component, the mutation point in the motion is found, and then the structure is optimized by selection of different structural parameters. The optimization result shows a significant improvement for the reliability and stability of the whole machine.


Sign in / Sign up

Export Citation Format

Share Document